Pubblicato
El problema del primer retorno para algunos operadores pseudo-diferenciables elípticos sobre los p-adicos
The Problem of the First Passage Time for Some Elliptic Pseudodfferential Operators Over the p-Adics
DOI:
https://doi.org/10.15446/recolma.v48n2.54124Parole chiave:
Caminatas aleatorias, Difusión, Sistemas dinámicos des ordenados, Relajación en sistemas complejos, números p-ádicos, Análisis no Arquimediano. (es)Random walks, Diffusion, Dynamics of disordered systems, Relaxation of complex systems, p-Adic numbers, Non-archimean anal ysis (en)
##submission.downloads##
ciertos operadores pseudo-diferenciales elípticos en dimensiones 4 y 2 sobre los
números p-ádicos. Este tipo de problemas esta conectado con ciertos modelos
de sistemas complejos
sociated to certain elliptic pseudodierential operators in dimensions 4 and 2
over the p-adics. This type of problems appeared in connection with certain
models of complex systems.
1Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F, México. Email: fchacon@math.cinvestav.mx
In this article we study the problem of the first passage time associated to certain elliptic pseudodifferential operators in dimensions 4 and 2 over the p-adics. This type of problems appeared in connection with certain models of complex systems.
Key words: Random walks, Diffusion, Dynamics of disordered systems, Relaxation of complex systems, p-Adic numbers, Non-archimean analysis.
2000 Mathematics Subject Classification: 82B41, 82C44, 26E30.
En este artículo se estudia el problema del primer retorno asociado a ciertos operadores pseudo-diferenciales elípticos en dimensiones 4 y 2 sobre los números p-ádicos. Este tipo de problemas está conectado con ciertos modelos de sistemas complejos.
Palabras clave: Caminatas aleatorias, difusión, sistemas dinámicos desordenados, relajación en sistemas complejos, números p-ádicos, análisis no Arquimediano.
Texto completo disponible en PDF
References
[1] S. Albeverio, A. Y. Khrennikov, and V. M. Shelkovich, Theory of p-Adic Distributions: Linear and Nonlinear Models, Cambridge University Press, 2010.
[2] V. A. Avetisov and A. K. Bikulov, 'On the Ultrametricity of the Fluctuation Dynamic Mobility of Protein Molecules', Tr. Mat. Inst. Steklova 265, (2009), 75-81. (Russian)
[3] V. A. Avetisov, A. K. Bikulov, and S. V. Kozyrev, 'Description of Logarithmic Relaxation by a Model of a Hierarchical Random Walk', Dokl. Akad. Nauk 368 2, (1999), 164-167. (Russian)
[4] V. A. Avetisov, A. K. Bikulov, and V. A. Osipov, 'p-Adic Description of Characteristic Relaxation in Complex Systems', J. Phys. A 36 15, (2003), 4239-4246.
[5] V. A. Avetisov, A. K. Bikulov, and A. P. Zubarev, 'First Passage Time Distribution and the Number of Returns for Ultrametric Random Walks', J. Phys. 42, (2009), 18.
[6] O. F. Casas-Sánchez and W. A. Zúñiga-Galindo, 'Riesz Kernels and Pseudodifferential Operators Attached to Quadratic Forms Over p-Adic Fields', p-Adic Numbers, Ultrametric Anal. Appl. 5, 3 (2013), 177-193.
[7] L. F. Chacón-Cortes and W. A. Zúñiga-Galindo, 'Nonlocal Operators, Parabolic-Type Equations, and Ultrametric Random Walks', J. Math. Phys. 54, (2013).
[8] B. Dragovich, A. Y. Khrennikov, S. V. Kozyrev, and I. V. Volovich, 'On p-Adic Mathematical Physics', p-Adic Numbers Ultrametric Anal Appl 1, (2009), 1-17.
[9] E. B. Dynkin, Markov Processes, Vol. I, Springer-Verlag, 1965.
[10] J. Galeano-Peñaloza and W. A. Zúñiga-Galindo, 'Pseudo-Differential Operators with Semi-Quasielliptic Symbols over p-Adic Fields', J. Math. Anal. Appl. 1, 386 (2012), 32-49.
[11] W. Karwowski, 'Diffusion Processes With Ultrametric Jumps', Rep. Math. Phys. 60, (2007), 221-235.
[12] A. Y. Khrennikov and S. V. Kozyrev, 'p-Adic Pseudodifferential Operators and Analytic Continuation of Replica Matrices', Theoret. and Math. Phys. 144, 2 (2005), 1166-1170.
[13] J. Lörinczi, F. Hiroshima, and V. Betz, Feynman-Kac-Type Theorems and Gibbs Measures on Path Space: With Applications to Rigorous Quantum Field Theory, Vol. 34, Walter de Gruyter, 2011.
[14] M. Mézard, G. Parisi, and M. A. Virasoro, 'Spin Glass Theory and Beyond', World Scientific, (1987).
[15] K. A. N., Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields, Marcel Dekker, Inc., New York, 2001.
[16] E. Nelson, 'Feynman Integrals and the Schrödinger Equation', Journal of Mathematical Physics 5, 3 (1964), 332-343.
[17] R. Rammal, G. Toulouse, and M. A. Virasoro, 'Ultrametricity for Physicists', Rev. Modern Phys. 58, (1986), 765-788.
[18] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, 1975.
[19] V. S. Varadarajan, 'Path Integrals for a Class of p-Adic Schrödinger Equations', Lett. Math. Phys. 39, (1997), 97-106.
[20] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, World Scientific, 1994.
[21] W. A. Zúñiga-Galindo, 'Parabolic Equations and Markov Processes over p-Adic Fields', Potential Anal. 28, 2 (2008), 185-200.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv48n2a04,
AUTHOR = {Chacón-Cortes, Leonardo Fabio},
TITLE = {{The Problem of the First Passage Time for Some Elliptic Pseudodifferential Operators Over the \boldsymbol{p}-Adics}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2014},
volume = {48},
number = {2},
pages = {191--209}
}
Come citare
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Scarica citazione
CrossRef Cited-by
1. O. F. Casas-Sánchez, L. F. Chacón-Cortés, J. Galeano-Peñaloza. (2020). Semi-linear Cauchy problem and Markov process associated with a p-adic non-local ultradiffusion operator. Journal of Pseudo-Differential Operators and Applications, 11(3), p.1085. https://doi.org/10.1007/s11868-020-00334-2.
2. O. F. Casas-Sánchez, J. Galeano-Peñaloza, J. J. Rodríguez-Vega. (2021). -Adic Markov process and the problem of the first return over balls. Ukrains’kyi Matematychnyi Zhurnal, 73(7), p.902. https://doi.org/10.37863/umzh.v73i7.464.
3. Leonardo Fabio Chacón-Cortés, Oscar Francisco Casas-Sánchez. (2019). Non-radial functions, nonlocal operators and Markov processes over p-adic numbers. Universitas Scientiarum, 24(2), p.381. https://doi.org/10.11144/Javeriana.SC24-2.nrfn.
4. O. F. Casas-Sánchez, J. Galeano-Peñaloza, J. J. Rodríguez-Vega. (2021). p-Adic Markov Process and the Problem of First Return Over Balls. Ukrainian Mathematical Journal, 73(7), p.1050. https://doi.org/10.1007/s11253-021-01976-1.
Dimensions
PlumX
Viste delle pagine degli abstract
Downloads
Licenza
Copyright (c) 2014 Revista Colombiana de Matemáticas
TQuesto lavoro è fornito con la licenza Creative Commons Attribuzione 4.0 Internazionale.