Pubblicato
On a family of groups generated by parabolic matrices
Sobre una familia de grupos generados por matrices parabólicas
DOI:
https://doi.org/10.15446/recolma.v53n2.85541Parole chiave:
modular group, parametrized modular group, singular set, discrete groups, Chebyshev polynomials (en)grupo modular, grupo modular parametrizado, conjunto singular, grupos discretos, polinomios de Chebyshev (es)
##submission.downloads##
0 1 ) and by the elliptic matrix ( 0 -1 1 0 ). The elements of the matrices W in such groups can be computed by a recursion formula. These groups are special cases of the generalized parametrized modular groups introduced in [16].
We study the sets {z : tr W(z) ∈ [-2; +2]} [13] and their critical points and geometry, furthermore some finite index subgroups and the discretness of subgroups.
0 1 ) y por la matriz elíptica ( 0 -1 1 0 ). Los elementos de las matrices W en tales grupos se pueden calcular mediante una fórmula de recurrencia. Estos grupos son casos especiales de la generalización del grupo modular parametrizado estudiado en [16].
Estudiamos los conjuntos {z : tr W(z) ∈ [-2; +2]} [13] y sus puntos críticos y geometría, así como también algunos subgrupos de índice finito y la discreticidad de tales subgrupos.
Riferimenti bibliografici
A.F. Beardon, The geometry of discrete groups, Springer, New York, 1983.
N. Bircan and Ch. Pommerenke, On chebyshev polynomials and GL2; Z=pZ, Bull.Math.Soc.Sci.Math.Roumanie 55 (2012), 353-364.
P.M. Cohn, A presentation of SL2 for euclidean imaginary quadratic number fields, Mathematik 15 (1968), 156-163.
A. Eremenko and W.K. Hayman, On the length of lemniscates, Mich. Math.J. 46 (1999), no. 2, 409-415.
M. Fekete, Über den transfiniten durchmesser ebener punktmengen ii, Math.Z. 32 (1930), 215-221.
B. Fine and M. Newman, The normal subgroup structure of the Picard group, Trans. Am. Math. Soc. 302 (1987), 769-786.
J. Gilman and L. Keen, Discreteness criteria and the hyperbolic geometry of palindromes, Conform.Geom.Dyn. 13 (2009), 76-90.
J. Gilman and P. Waterman, Classical two-parabolic t-schottky groups, J. Anal. Math. 98 (2006), 1-42.
T. Jörgensen, On discrete groups of möbius transformations, Amer. J. Math 98 (1976), 739-749.
S. Lang, Introduction to diophantine approximation, Springer, New York, 1995.
C. MacLachlan and A.W. Reid, The arithmetic of hyperbolic 3-manifolds, Springer, New York, 2003.
D. Mejia and Ch. Pommerenke, Analytic families of homomorphisms into PSL(2, C), Comput. Meth. Funct. Th. 10 (2010), 81-96.
D. Mejia, Ch. Pommerenke, and M. Toro, On the parametrized modular group, J.Anal. Math. 127 (2015), 109-128.
Ch. Pommerenke and M. Toro, On the two-parabolic subgroups of SL(2, C), Rev. Colomb. Mat. 45 (2011), no. 1, 37-50.
Ch. Pommerenke and M. Toro, Free subgroups of the parametrized modular group, Rev. Colomb. Mat. 49 (2015), no. 2, 269-279.
Ch. Pommerenke and M. Toro, A generalization of the parametrized modular group, Ann. Acad. Sci. Fenn. Math. 43 (2018), no. 1, 509-519.
Ch. Pommerenke and M. Toro, Parabolic representations of 3-bridge knot groups, Preprint (2019).
R. Riley, Parabolic representations of knot groups I, Proc.London Math.Soc. 3 (1972), 217-242.
R. Riley, Seven excellent knots, London Math.Soc. Lecture Notes 48 (1982), 81-151.
R. Riley, Nonabelian representations of 2-bridge knot groups, Quart. J. Math. Oxford (2) 35 (1984), 191-208.
R. Riley, Holomorphically parametrized families of subgroups of SL(2, C), Mathematika 32 (1985), 248-264.
Come citare
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Scarica citazione
Licenza
Copyright (c) 2020 Revista Colombiana de Matemáticas
TQuesto lavoro è fornito con la licenza Creative Commons Attribuzione 4.0 Internazionale.