Pubblicato
New analytical method for solving nonlinear time-fractional reaction-diffusion-convection problems
Nuevo método analítico para resolver problemas no lineales fraccionados por tiempo reacción-difusión-convección
DOI:
https://doi.org/10.15446/recolma.v54n1.89771Parole chiave:
Nonlinear time-fractional reaction-diffusion-convection problems, Caputo fractional derivative, generalized Taylor fractional series method (en)Problemas no lineales fraccionados en el tiempo de reacción-difusión-convección, derivado fraccional de Caputo, método de serie fraccional de Taylor generalizado (es)
##submission.downloads##
Riferimenti bibliografici
M. Hamdi Cherif, K. Belghaba, and D. Ziane, Homotopy perturbation method for solving the fractional fisher’s equation, International Journal of Analysis and Applications 10 (2016), no. 1, 9-16.
D. Das and R. K. Bera, Generalized differential transform method for nonlinear inhomogeneous time fractional partial differential equation, International Journal of Sciences and Applied Research 4 (2017), 71-77.
K. Diethelm and N. J. Ford, Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications 265 (2002), 229-248.
K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, New York, 1993.
H. Molaei, Solutions of the nonlinear reaction diffusion convection problems using analytical method, Revista Publicando 5 (2018), no. 15, 109-119.
Z. Odibat and S. Momani, The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics, Computers and Mathematics with Applications 58 (2009), 2199-2208.
K. B. Oldham and J. Spanier, The fractional calculus, Academic Press, New York, 1974.
I. Podlubny, Fractional differential equations, Academic Press, New York, 1999.
S. G. Samko, A.A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Yverdon, 1993.
A. Shidfar, A. Babaei, A. Molabahrami, and M. Alinejadmofradi, Approximate analytical solutions of nonlinear reaction-diffusion-convection problem, Mathematical and Computer Modeling 53 (2011), 261-268.
A. M. Shuku, Adomian decomposition method for certain space-time fractional partial differential equations, IOSR Journal of Mathematics 11 (2015), no. 1, 55-65.
X. B. Yin, S. Kumar, and D. Kumar, A modified homotopy analysis method for solution of fractional wave equations, Advances in Mechanical Engineering 7 (2015), no. 12, 1-8.
Come citare
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Scarica citazione
CrossRef Cited-by
1. N. M. Noor,, S. A. M. Yatim,, Z. B. Ibrahim,. (2024). Fractional Block Method for the Solution of Fractional Order Differential Equations. Malaysian Journal of Mathematical Sciences, 18(1), p.185. https://doi.org/10.47836/mjms.18.1.11.
2. Muhammed Naeem, Noufe H. Aljahdaly, Rasool Shah, Wajaree Weera. (2022). The study of fractional-order convection-reaction-diffusion equation via an Elzake Atangana-Baleanu operator. AIMS Mathematics, 7(10), p.18080. https://doi.org/10.3934/math.2022995.
Dimensions
PlumX
Viste delle pagine degli abstract
Downloads
Licenza
Copyright (c) 2020 Revista Colombiana de Matemáticas
TQuesto lavoro è fornito con la licenza Creative Commons Attribuzione 4.0 Internazionale.