Pubblicato
Minimal prime ideals of skew PBW extensions over 2-primal compatible rings
Ideales primos minimales de extensiones PBW torcidas sobre anillos compatibles 2-primal
DOI:
https://doi.org/10.15446/recolma.v54n1.89788Parole chiave:
Minimal prime ideal, 2-primal ring, unit, skew PBW extension (en)Ideal primo minimal, anillo 2-primal, unidad, extensión PBW torcida (es)
##submission.downloads##
Riferimenti bibliografici
S. Annin, Associated and Attached Primes Over Noncommutative Rings, PhD thesis, University of California, Berkeley, 2002.
S. Annin, Associated primes over Ore extension rings, J. Algebra Appl. 3 (2004), no. 2, 193-205.
V. A. Artamonov, Derivations of skew PBW extensions, Commun. Math. Stat. 3 (2015), no. 4, 449-457.
V. A. Artamonov, O. Lezama, and W. Fajardo, Extended modules and Ore extensions, Commun. Math. Stat 4 (2016), no. 2, 189-202.
V. V. Bavula, Generalized Weyl algebras and their representations, Algebra i Analiz 4 (1992), no. 1, 75-97.
A. Bell and K. Goodearl, Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions, Pacific J. Math. 131 (1988), no. 11, 13-37.
J. Bueso, J. Gómez-Torrecillas, and A. Verschoren, Algorithmic Methods in Non-commutative algebra: Applications to Quantum Groups, Kluwer Academic Publishers, 2003.
M. Ferrero and K. Kishimoto, On differential rings and skew polynomials, Comm. Algebra 13 (1985), no. 2, 285-304.
C. Gallego and O. Lezama, Gröbner bases for ideals of o-PBW extensions, Comm. Algebra 39 (2011), no. 1, 50-75.
E. Hashemi, Compatible ideals and radicals of Ore extensions, New York J. Math. 12 (2006), 349-356.
E. Hashemi, K. Khalilnezhad, and A. Alhevaz, (o; d)-Compatible Skew PBW Extension Ring, Kyungpook Math. J. 57 (2017), no. 3, 401-417.
E. Hashemi, K. Khalilnezhad, and A. Alhevaz, Extensions of rings over 2-primal rings, Le Matematiche LXXIV (2019), no. I, 141-162.
E. Hashemi, K. Khalilnezhad, and M. Ghadiri Herati, Baer and quasi-Baer properties of skew PBW extensions, J. Algebraic Systems 7 (2019), no. 1, 1-24.
E. Hashemi and A. Moussavi, Polinomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207-224.
E. Hashemi, A. Moussavi, and H. Haj Seyyed Javadi, Polinomial Ore extensions of Baer and p.p.-rings, Bull. Iranian Math. Soc. 29 (2003), no. 2, 65-86.
C. Y. Hong, J. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215-226.
C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Rigid ideals and radicals of Ore extensions, Algebra Colloq. 12 (2005), no. 3, 399-412.
J. Jaramillo and A. Reyes, Symmetry and Reversibility Properties for Quantum Algebras and Skew Poincaré-Birkhoff-Witt Extensions, Ingeniería y Ciencia 14 (2017), no. 27, 29-52.
H. Jiménez and O. Lezama, Gröbner bases of modules over o-PBW extensions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 32 (2016), no. 1, 39-66.
N. K. Kim and T. K. Kwak, Minimal prime ideals in 2-primal rings, Math. Japon 50 (1999), no. 3, 415-420.
J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
T. Y. Lam, A. Leroy, and J. Matczuk, Primeness, Semiprimeness and Prime Radical of Ore extensions, Comm. Algebra 25 (1997), no. 8, 2459-2506.
O. Lezama, J. P. Acosta, and A. Reyes, Prime ideals of skew PBW extensions, Rev. Un. Mat. Argentina 56 (2015), no. 2, 39-55.
O. Lezama and C. Gallego, d-Hermite rings and skew PBW extensions, Sao Paulo J. Math. Sci. 10 (2016), no. 1, 60-72.
O. Lezama and C. Gallego, Projective modules and Gröbner bases for skew PBW extensions, Dissertationes Math. 521 (2017), 1-50.
O. Lezama and A. Reyes, Some Homological Properties of Skew PBW Extensions, Comm. Algebra 42 (2014), no. 3, 1200-1230.
O. Lezama and H. Venegas, Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry, Discuss. Math. Gen. Algebra Appl. 37 (2019), 45-57.
G. Marks, Skew polynomial rings over 2-primal rings, Comm. Algebra 27 (1999), no. 9, 4411-4423.
G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123.
G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494-520.
A. R. Nasr-Isfahani, Ore extensions of 2-primal rings, J. Algebra Appl. 13 (2014), no. 3, 1350117-1 - 1350117-6.
A. Niño and A. Reyes, Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions, Bol. Mat. 24 (2017), no. 2, 141-148.
A. Niño and A. Reyes, Some remarks about minimal prime ideals of skew Poincaré-Birkhoff-Witt extensions, Algebra Discrete Math. (2020), To appear.
O. Ore, Theory of Non-Commutative Polynomials, Ann. of Math. Second Series 34 (1933), no. 3, 480-508.
A. Reyes, Uniform Dimension over Skew PBW extensions, Rev. Colombiana Mat. 48 (2014), no. 1, 79-96.
A. Reyes, Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings, Rev. Integr. Temas Mat. 33 (2015), no. 2, 173-189.
A. Reyes, Armendariz modules over skew PBW extensions, Comm. Algebra 47 (2019), no. 3, 1248-1270.
A. Reyes and C. Rodríguez, The McCoy Condition on Skew Poincaré-Birkhoff-Witt Extensions, Commun. Math. Stat. (2019), https://doi.org/10.1007/s40304-019-00184-5.
A. Reyes and H. Suárez, A note on zip and reversible skew PBW extensions, Bol. Mat. 23 (2016), no. 1, 71-79.
A. Reyes and H. Suárez, Bases for quantum algebras and skew Poincaré-Birkhoff-Witt extensions, Momento 54 (2017), 54-75.
A. Reyes and H. Suárez, PBW bases for some 3-dimensional skew polynomial algebras, Far East J. Math. Sci. (FJMS) 101 (2017), no. 6, 1207-1228.
A. Reyes and H. Suárez, o-PBW Extensions of Skew Armendariz Rings, Adv. Appl. Clifford Algebr. 27 (2017), no. 4, 3197-3224.
A. Reyes and H. Suárez, A notion of compatibility for Armendariz and Baer properties over skew PBW extensions, Rev. Un. Mat. Argentina 59 (2018), no. 1, 157-178.
A. Reyes and H. Suárez, Radicals and Köthe's conjecture for skew PBW extensions, Commun. Math. Stat. (2019), https://doi.org/10.1007/s40304-019-00189-0.
A. Reyes and H. Suárez, Skew Poincaré-Birkhoff-Witt extensions over weak zip rings, Beitr. Algebra Geom. 60 (2019), no. 2, 197-216.
A. Reyes and H. Suárez, Skew Poincaré-Birkhoff-Witt extensions over weak compatible rings, J. Algebra Appl. (2020), https://doi.org/10.1142/S0219498820502254.
A. Reyes and Y. Suárez, On the ACCP in skew Poincaré-Birkhoff-Witt extensions, Beitr. Algebra Geom. 59 (2018), no. 4, 625-643.
A. L. Rosenberg, Non-commutative Algebraic Geometry and Representations of Quantized Algebras, 330 ed., Kluwer Academic Publishers, 1995.
G. Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973-74), 43-60.
A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra 223 (2000), no. 2, 427-436.
H. Suárez, O. Lezama, and A. Reyes, Calabi-Yau property for graded skew PBW extensions, Rev. Colombiana Mat. 51 (2017), no. 2, 221-239.
H. Suárez and A. Reyes, Nakayama Automorphism of Some Skew PBW Extensions, Ingeniería y Ciencia 15 (2019), no. 29, 157-177.
A. B. Tumwesigye, J. Richter, and S. Silvestrov, Centralizers in PBW extensions, (2019), https://arxiv.org/pdf/1910.11177.pdf.
Y. Wang and W. Chen, Minimal Prime Ideals and Units in 2-Primal Ore Extensions, J. Math. Res. Appl. 38 (2018), no. 4, 377-383.
Come citare
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Scarica citazione
CrossRef Cited-by
1. Andrés Chacón, María Camila Ramírez, Armando Reyes. (2024). Maps between schematic semi-graded rings. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, https://doi.org/10.1007/s13366-024-00773-8.
2. Sebastián Higuera, Armando Reyes. (2023). On weak annihilators and nilpotent associated primes of skew PBW extensions. Communications in Algebra, 51(11), p.4839. https://doi.org/10.1080/00927872.2023.2222393.
3. A. Niño, A. Reyes. (2020). Some remarks about minimal prime ideals of skew Poincaré-Birkhoff-Witt extensions. Algebra and Discrete Mathematics, 30(2), p.207. https://doi.org/10.12958/adm1307.
4. Héctor Suárez, Armando Reyes. (2023). $$\Sigma$$-Semicommutative rings and their skew PBW extensions. São Paulo Journal of Mathematical Sciences, 17(2), p.531. https://doi.org/10.1007/s40863-023-00356-w.
5. A. Reyes, H. Suárez. (2021). Skew PBW extensions over symmetric rings. Algebra and Discrete Mathematics, 32(1), p.76. https://doi.org/10.12958/adm1767.
6. Armando Reyes, Fabio Calderón. (2022). Some interactions between Hopf Galois extensions and noncommutative rings. Universitas Scientiarum, 27(2), p.58. https://doi.org/10.11144/Javeriana.SC271.sibh.
7. Héctor Suárez, Armando Reyes, Yésica Suárez. (2023). Homogenized skew PBW extensions. Arabian Journal of Mathematics, 12(1), p.247. https://doi.org/10.1007/s40065-022-00410-z.
8. Sebastián Higuera, María Camila Ramírez, Armando Reyes. (2024). On the Uniform Dimension and the Associated Primes of Skew PBW Extensions. Bulletin of the Brazilian Mathematical Society, New Series, 55(4) https://doi.org/10.1007/s00574-024-00419-2.
9. Héctor Suárez, Andrés Chacón, Armando Reyes. (2022). On NI and NJ skew PBW extensions. Communications in Algebra, 50(8), p.3261. https://doi.org/10.1080/00927872.2022.2028799.
Dimensions
PlumX
Viste delle pagine degli abstract
Downloads
Licenza
Copyright (c) 2020 Revista Colombiana de Matemáticas
TQuesto lavoro è fornito con la licenza Creative Commons Attribuzione 4.0 Internazionale.