Pubblicato

2005-07-01

A variant of Newton’s method for generalized equations

Parole chiave:

Set-valued mapping, Generalized equation, Linear convergence, Aubin continuity, 2000 Mathematics Subject Classification, Primary: 49J53, 47H04, Secondary: 65K10 (en)

##submission.downloads##

Autori

  • Université des Antilles et de la Guyane, France
  • Université des Antilles et de la Guyane, France

Abstract. In this article, we study a variant of Newton’s method of the following form

0 ϵ ƒ(χk) + ɦ ∇ ƒ(χk) (χk+1 - χk) + F (χk+1), 

where ƒ is a function whose Frechet derivative is K-lipschitz, F is a set-valued map between two Banach spaces X and Y and h is a constant. We prove that this method is locally convergent to x* a solution of 

0 ϵ ƒ(χ) + F(χ), 

if the set-valued map [ƒ(χ*) + ɦ ∇ ƒ(χ*)  (. — x*) + F (.)] is Aubin continuous at (0, x*) and we also prove the stability of this method.

 

Riferimenti bibliografici

J-P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9 (1984), 87-111.

J-P. Aubin & H. Frankowska, Set-valued Analysis, Birkhäuser, Boston, 1990.

A. L. Dontchev, Local convergence of the newton method for generalized equations, C. R. Acad. Sc. 1 (1996), 327-329.

A. L. Dontchev, Uniform convergence of the newton method for Aubin continuous maps, Serdica. Math. J. 22 (1996), 385-398.

A. L. Dontchev & W. W. Hager, An inverse mapping theorem for set-valued maps, Proc. Amer. Math. Soc. 121 (1994), 481-489.

A. D. Ioffe & V. M. Tikhomirov, Theory of Extremal Problems, North Holland, Amsterdam, 1979.

J. M. Ortega & W. C Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New-York and London, 1970.

A. M Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic Press, New-York and London, 1970.

A. Pietrus, Does Newton’s method for set-valued maps converges uniformly in mild differentiability context?, Rev. Colombiana Mat. 32 (2000), 49-56.

A. Pietrus, Generalized equations under mild differentiability conditions, Rev. S. Acad. Cienc. Exact. Fis. Nat. 94 no. 1 (2000), 15-18.

R. T. Rockafellar, Lipschitzian properties of multifunctions, Nonlinear Anal. 9 (1984) 867-885.

R. T. Rockafellar & R. Wets, Variational analysis, Ser. Com. Stu. Math., Springer, 1998.

Come citare

APA

Jean-Alexis e Pietrus. (2005). A variant of Newton’s method for generalized equations. Revista Colombiana de Matemáticas, 39(2), 97–112. https://revistas.unal.edu.co/index.php/recolma/article/view/94620

ACM

[1]
Jean-Alexis e Pietrus 2005. A variant of Newton’s method for generalized equations. Revista Colombiana de Matemáticas. 39, 2 (lug. 2005), 97–112.

ACS

(1)
Jean-Alexis; Pietrus. A variant of Newton’s method for generalized equations. rev.colomb.mat 2005, 39, 97-112.

ABNT

JEAN-ALEXIS; PIETRUS. A variant of Newton’s method for generalized equations. Revista Colombiana de Matemáticas, [S. l.], v. 39, n. 2, p. 97–112, 2005. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/94620. Acesso em: 22 gen. 2025.

Chicago

Jean-Alexis, e Pietrus. 2005. «A variant of Newton’s method for generalized equations». Revista Colombiana De Matemáticas 39 (2):97-112. https://revistas.unal.edu.co/index.php/recolma/article/view/94620.

Harvard

Jean-Alexis e Pietrus (2005) «A variant of Newton’s method for generalized equations», Revista Colombiana de Matemáticas, 39(2), pagg. 97–112. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/94620 (Consultato: 22 gennaio 2025).

IEEE

[1]
Jean-Alexis e Pietrus, «A variant of Newton’s method for generalized equations», rev.colomb.mat, vol. 39, n. 2, pagg. 97–112, lug. 2005.

MLA

Jean-Alexis, e Pietrus. «A variant of Newton’s method for generalized equations». Revista Colombiana de Matemáticas, vol. 39, n. 2, luglio 2005, pagg. 97-112, https://revistas.unal.edu.co/index.php/recolma/article/view/94620.

Turabian

Jean-Alexis, e Pietrus. «A variant of Newton’s method for generalized equations». Revista Colombiana de Matemáticas 39, no. 2 (luglio 1, 2005): 97–112. Consultato gennaio 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/94620.

Vancouver

1.
Jean-Alexis, Pietrus. A variant of Newton’s method for generalized equations. rev.colomb.mat [Internet]. 1 luglio 2005 [citato 22 gennaio 2025];39(2):97-112. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/94620

Scarica citazione

Viste delle pagine degli abstract

33

Downloads

I dati di download non sono ancora disponibili.