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ABSTRACT: Systems of differential equations are used as the basis to define mathematical structures for moments,
like the mean and variance of probability distributions of random variables. Nevertheless, the integration of a determi-
nistic model and a probabilistic one, in order to describe a random phenomenon, and take advantage of the observed
data for making inferences on certain population dynamic characteristics, can lead to parameter identifiability pro-
blems for the observed sample. Furthermore, approaches to deal with those problems are usually inappropriate. In
this paper, the shape of the likelihood function of a SIR-Poisson model is used to describe the relationship between
flat likelihoods and the practical parameter identifiability problem. In particular, we show how a flattened shape for
the profile likelihood of the basic reproductive number Ry, arises as the observed sample (over time) becomes sma-
ller, causing ambiguity regarding the shape of the average model behavior. We conducted some simulation studies
to analyze the flatness severity of the R likelihood, and the coverage frequency of the likelihood-confidence regions
for the model parameters. Finally, we describe some approaches to deal the practical identifiability problem, showing
the impact that those can have on inferences. We believe this work can help to raise awareness on the way statistical
inferences can be affected by a priori parameter assumptions and the underlying relationship between them, as well as
those arising by model reparameterizations and incorrect model assumptions.

KEYWORDS: Flat likelihood function; ordinary differential equations; SIR model, basic reproductive number; like-
lihood contours; profile likelihood function.

RESUMEN: Sistemas de ecuaciones diferenciales son usados como base para definir estructuras matemdticas para
momentos, como la media y la varianza de distribuciones de probabilidad de variables aleatorias. Sin embargo,
integrar un modelo determinista con uno de probabilidad para representar un fendmeno aleatorio y aprovechar los
datos observados de dicho fenémeno para hacer inferencia sobre caracteristicas de la dindmica poblacional, puede
producir problemas de identificabilidad de pardmetros para la muestra observada. Mds ain, dichos problemas suelen
ser tratados de forma inapropiada. En este articulo se utiliza la forma de la funcién de verosimilitud del modelo SIR-
Poisson para describir la relacién entre funciones de verosimilitud planas y el problema de identificabilidad practica
de pardmetros. En particular, se muestra como la forma aplanada de la funcién de verosimilitud perfil del ndmero
reproductivo basico RO aparece a medida que la muestra observada (en el tiempo) se reduce y produce ambigiiedad

en la forma del comportamiento medio del modelo. Se efectuan diversos estudios de simulacién con el fin de analizar
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la severidad de la planura de la verosimilitud de Ry y la frecuencia de cobertura de las regiones de verosimilitud-
confianza de los pardmetros del modelo. Finalmente, se describen algunos tratamientos que se han utilizado para
abordar el problema de identificabilidad préictica y se muestra el impacto que éstos pueden tener en las inferencias.
Se considera que este trabajo ayudara a tomar conciencia sobre cémo las inferencias estadisticas se ven afectadas por
suposiciones a priori sobre los pardmetros y la relacién subyacente entre ellos, asi como por reparametrizaciones del
modelo y por suposiciones incorrectas sobre el mismo.

PALABRAS CLAVE: Funcién de verosimilitud plana; ecuaciones diferenciales ordinarias; modelo SIR; nimero

reproductivo bésico; contornos de verosimilitud; funcién de verosimilitud perfil.

1. INTRODUCTION

Systems of differential equations are mathematical tools broadly used for modeling physical, chemical, bio-
logical and epidemiological processes, among others. In particular, mathematical models based on ordinary
differential equations have been widely proposed to study different infectious diseases such as dengue, Zi-
ka, Ebola, COVID-19, cholera, among others. For this modeling approach, the SIR model (Kermack &
McKendrick, 1927) has been the basis of many models (Arino & Van den Driessche, 2003; Pandey et
al., 2013; Khan et al., 2014; Xiao & Zou, 2014; Cosner, 2015; Lee & Castillo-Chavez,, 2015; Hendron &
Bonsall, 2016; Phaijoo & Gurung, 2016; Kim et al., 2017; Ghosh et al., 2018; Mishra et al., 2018; Mishra
& Gakkhar, 2018; Nguyen et al., 2018; Qi et al., 2018; Sasmal et al., 2018; Tuncer et al., 2018; Vinh et
al., 2018; Tocto-Erazo et al., 2020; Tocto-Erazo et al., 2021). These models usually provide a threshold
value, known as the basic reproductive number (Ry), that indicates the severity of the disease, as well as the
existence of endemic states. Estimation of parameter R is relevant in public health decision making, being

very helpful for implementing adequate controls for infectious diseases.

In the problem regarding the estimation of parameter Ry, as well as some other parameters of systems of
differential equations, it is common to use a Poisson model or a Negative Binomial distribution, to descri-
be the frequency distribution of random variables associated to different observable characteristics of the
dynamic under study, like the number of infected people, number of deaths, and some others (Chowell et
al., 2007; Chowell et al., 2008; Lloyd-Smith, 2007; Chowell et al., 2012; Capistran et al., 2012; Acuiia-
Zegarra et al., 2020; Acuiia-Zegarra et al., 2021; Nufiez-Lopez et al., 2021). In these cases it is common
to use systems of differential equations as the basis for defining mathematical structures for the mean and
variance of these probability distributions. In this paper we consider the Poisson model, whose mean and
variance are fully determined by a SIR model. We selected both models (the SIR and the Poisson one) due
to: convenience regarding the number of unknown parameters and computational effort; they are represen-
tative in the statistical and ordinary differential equations literature. Despite the mathematical simplicity of
these models, they enable us to illustrate the essence of the parameter identifiability problem for an observed
sample, the main objective of this manuscript; allowing also to show not only how this problem have been

handled, but also the impact it can have on resulting inferences.
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Regarding the negative binomial case, even though it is also a counting model used in the differential equa-
tions parameter estimation, this will not be addressed here. This model has two unknown parameters, a
probability of exit and an overdispersion parameter; both involved in the mathematical expression of its
mean or expected value. Therefore, it could happen that the occurrence of a lack of parameter identifiability,
based on the observed sample, could not only be caused by the relationship between the mean of the negative
binomial distribution and the SIR model parameters, and their own relationship, but also could be due (to
some extent) by the negative binomial model itself, caused by the relationship between its parameters. In
fact, we consider that the analysis of this distribution, in the context studied in this manuscript, is a research

topic in its own right.

The problem of structural and practical identifiability, in models involving systems of differential equations,
has already been reported in literature by several authors (Rosenbaum et al., 1999; Raue et al., 2009; Zhan
et al., 2015; Tuncer et al., 2016; Gabor et al., 2017; Kao & Eisenberg, 2018; Marquis et al., 2018; Sacco-
mani & Thomaseth, 2018). In this paper we are interested in the problem of parameter identifiability for an
observed sample (practical identifiability), which mainly occurs when relatively flat likelihood functions are
observed, regarding to their maximum, yielding likelihood-confidence regions that cover a large part of the
parameter space, and possibly extending infinitely (Raue et al., 2009; Cole, 2020). In particular, for the case
of the SIR-Poisson model we are interested in describing the relationship between flat likelihood functions
and the practical parameter identifiability problem, considering not only a standard reparameterization of
the SIR model, but also another one involving the basic reproductive number Ry. Moreover, we are also
interested about quantifying the frequency of occurrence of flat likelihoods, and to understand the observed
sample configurations that cause these kind of likelihoods. In this paper we also show some approaches that
have been used to address the problem of parameter identifiability, pointing out the impact that these can
have on inferences. This is done in order to understand the effect that our assumptions and reparameteri-
zations have on inferences, and to become aware about the validity of the uncertainty quantification in the

statistical estimation of the parameters of systems of differential equations.

In this paper we perform some simulations in order to explore the extent to which the SIR-Poisson model
leads to flat likelihoods, analyzing the coverage frequency of the likelihood-confidence regions of the model
parameters. In particular, we focus on the behavior of the relative profile likelihood function of Ry, when
Ry takes large values, showing that flat likelihoods frequently occur when the observed sample (over time)
is reduced, producing ambiguity in the shape of the average model behavior. Thus, in real applications, the
upper limit of Ry confidence intervals would be practically infinite, a result that is not very useful for prac-

tical purposes, in a real problem.

However, the coverage frequencies of these intervals are still close to the nominal probability coverage.

Finally, in this paper we describe three approaches that have been used to address the problem of practical
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parameter identifiability, showing the impact these can have on inferences: one of them involves setting
values to the unknown parameters; another approach relies on estimating the growth rate of the SIR model,
by assuming an exponential growth model for the data; and the third one involves performing Monte Carlo
simulations to estimate R, based on a prior knowledge for the distributions of the parameters of the SIR
model. In either case, we illustrate how quantitative claims about parameters and uncertainty estimation are

both completely determined by these estimation procedures.

This paper is organized as follows. In Section 2, a SIR model is reparametrized in terms of an unknown
parameter vector that involves the mean and variance of a Poisson model. The likelihood function, as well
as the relative likelihood function are defined and used to construct likelihood regions for this parameter
vector. Profile likelihood function is also defined and used to test hypothesis concerning a scalar parameter.
All these functions allow to easy visualize plausible and implausible parameter values. Section 3 includes
an example where a sample from a SIR-Poisson distribution is simulated, in order to show situations where
different parameter values give rise to same likelihood, for the observed data; illustrating the practical
parameter identifiability problem. On the other hand, in Section 4, a simulation study to analyze the shape
of the profile likelihood function of parameter Ry, the basic reproductive number, is performed. The selected
scenarios and experimental features allow to analyze how severe the flatness of this function can become.
Section 5 includes three common approaches used to deal with flat likelihoods in the SIR-Poisson model
case. Some situations that may lead to inappropriate or overestimated inferences are carefully discussed.

Finally, some general conclusions are presented in Section 6.

2. SIR-POISSON LIKELIHOOD

Suppose that X;,X,---,X, are independent random variables, observed at times 71,...,f,, respectively.

Suppose furthermore that X; is Poisson distributed with mean
i (¢
= -5 (1), (1)
i1 N

where N is a constant population, § > 0, and y > 0 are the transmission and recovery rates, / (r) and S (z) are

solutions for the SIR model given by

1(1)

S:—BTS(t),
j:ﬁ%?ﬁg—way (2)
R=nI(1),

N = S+1+R, and initial conditions at time 7y = 0 are fixed and known: S(#) = So, I(to) = Iy, and
R(t9) =N —So—Io.
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Note that A; in (1) relies on the SIR model reparameterization given in (2), so for a sake of clarity we will
write it as A; (0) instead of A;, in order to emphasize that SIR model is reparametrized in terms of the unk-
nown parameters vector 6 = (f3,y), and also that the unknown parameters of the Poisson model, governing
its mean and variance, are 3 and 7. This kind of Poisson model will be called SIR-Poisson model. It is im-
portant here to note that ® = (B, Ry) indicates that the SIR-Poisson model is reparametrized in terms of the
transmission rate § and the basic reproductive number (or basic reproductive ratio) Ry = /7; that is, (B,7)
< (B,B/Ro). We consider this reparameterization since it involves Ry, a parameter of considerable interest
in infectious disease control literature, for which some estimation techniques have been developed when

there is a presence of parameter identifiability problems.

Let x = (x1,x2,---,X,) be an observed sample from X;,Xz,---,X,. The likelihood function of parameter
vector 6 = (B3, 7), associated to the observed sample x, can be written as
"1 N
L(8:x) =[] — [ (0)]"exp 2 (0)], 3)

lx,-.

i=

where 6 = (B,y) € R* x R". Note that the likelihood function of (B,Ry) is obtained by replacing 6 =
(B.B/Ro) en (3).

The relative likelihood function of 0 is a standardized version of (3). It takes the value of one at the maximum
likelihood estimate of 0,
L(0; L(0;
R(8:x) = ( x), - L)
mgle(G,x) L <6;x>

“)

where 6 = (Bﬁ) is the maximum likelihood estimator (MLE) of parameter 6 = (B,7). Using the invariance
likelihood property, the MLE for Ry results Ry = B /Y. The relative likelihood in (4) measures the plausibility

of any specified 0 value, relative to that of 0. This likelihood function ranks all possible 6 values according
their respective plausibilities, in light of the observed sample x = (x,x,--- ,x,). Note that 6 € RT x R™,
thus, given a plot of R(6;x) we can easily distinguish plausible and implausible values for 6 = (B,Y), or
equivalently for 6 = (B, Ry). Furthermore, a plot of R (6;x) can be used also to visualize the flatness of the

likelihood surface.

Another practical way to make inferences about 8, which also allows us to visualize and describe the
likelihood surface, is through likelihood regions. The likelihood region for 0, at likelihood level ¢, where
¢ €10,1], is given by

Go(c;x) ={0:R(0;x) > c}. (5)

Any 6 value within this region has a relative likelihood R (0;x) > ¢, while R (8;x) < ¢ for those outside
this region; so just looking at the contour plot we can easily identify plausible and implausible 6 values,

at likelihood level c. Now, varying ¢ from 0 to 1, we obtain a complete set of nested likelihoods regions
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converging to the MLE 0, as c — 1; see Sprott (2000, pp. 14-15).

On the other hand, a 100 (1 — a) % confidence interval can be assigned to Gy (c;x) in (5), considering the
asymptotical distribution of the likelihood ratio —21InR (8;X), under Hy : © = 6. This likelihood ratio has
a Chi-squared distribution with two degrees of freedom, X% (Kalbfleisch, 1985; Serfling, 2002). When
—2Inc = g2 1—q, Where g2 1 is the quantile of probability 1 — o of a Chi-squared distribution with two
degrees of freedom, the confidence level for (p (¢;x) results 100 (1 — o) %. For example, when ¢ = 0.05, the
confidence level is approximately 95 %. Moreover,

P-value = P {x3 > —2InR(6¢;x) } = R(6;x),

and every specified 8 value has an associated P-value greater or equal than ¢ = 0.05 when lying within this

relative likelihood contour, and less than ¢ = 0.05 otherwise.

Now, assume that vector parameter 6 can be partitioned as follows: an interest parameter  and a nuisance
parameter A. Then, the profile likelihood of y and its corresponding relative likelihood function are defined
as

Limax (W;x) = m}?xL(lp, Asx),

v Lmax (W3x)  Liax (W)
Rmax (W’x) = m%LXL(Wa }\‘;x) = Loax (\Tf;x) (6)
v,

For example, we might be interested in making inferences about Ry, so the profile likelihood of y = Ry, and
its corresponding relative likelihood function can be calculated as

Lmax (R();x) = m[?XL(e = (B? B/RO) ;x) )

R (R()’x) _ Linax (Ro;x) _ Linax (Ro:x) 7
max ’ - . — P .
Illé‘:IXL(e,x) Limax <R0§x>

The relative profile likelihood varies between 0 and 1, and ranks all possible Ry values based on the obser-
ved sample x = (x1,x2,--- ,x,) on times fy,...,t,. Thus, a plot of Ryax (Ro;x) allows to distinguish plausible

and implausible Ry values. Note that we might be interested in making inferences about 3, so we can use
6 = (B, ) and consider (y,1) = (B, ).

A level c profile likelihood region (commonly an interval) for the scalar parameter of interest y is given by

Gy (¢;x) = {W : Rinax (¥3x) > ¢}, (8)

where 0 < ¢ < 1. Considering that the profile likelihood ratio statistic —21nRpax (W;X) follows an asym-
ptotically X% distribution, if the null hypothesis Hy : y = Wy is true, then (8) is a confidence interval for
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the scalar parameter , with approximate confidence level determined from —21nRp,x (Wo;X) ~ x% When
—2Inc = q1,1—a, Where q1,1_¢ is the quantile of probability 1 — o of a Chi-squared distribution with one
degree of freedom, the confidence level for Gy (c;x) is 100 (1 — o) %. For example, the confidence level will
be approximately 90 %, 95 %, and 99 % if ¢ = 0.25, 0.146, and 0.036, respectively; see Kalbfleisch (1985,
pp. 115-116).

In general, the profile or maximized likelihood is a powerful but simple inferential method for estimating
a parameter of interest, separately from the remaining unknown parameters of the statistical model. More
details about the profile likelihood approach are described in Kalbfleisch (1985, Section 10.3), Pawitan
(2001, Section 3.4), Sprott (2000, p. 66), Barndorff-Nielsen & Cox (1994, pp. 89-91), Serfling (2002, pp.
155-160), and Murphy & Van Der Vaart (2000). An important and mostly unknown aspect about the profile
likelihood function is that it can be used to study and visualize several features of the whole likelihood
function, such as for instance those associated with the flatness of the likelihood surface. The example
included in the following section illustrates how the graph of a profile likelihood, particularly the case of Ry,
can reveal the flat nature of the likelihood function of a SIR-Poisson model.

3. EXAMPLE: SIR-POISSON LIKELIHOOD

The dataset in Table 1 has been generated using a SIR-Poisson distribution, with vector parameters
(B,y) = (1.786946,0.4761905), N = 763, and initial conditions Iy = 1 and Sy = 762. Figure 1 shows, in
grayscale, the relative likelihood function for (B,7) and its corresponding contour plot. In particular, the
¢ = 0.05 contour level is indicated with a dashed line, and the MLE is marked with an asterisk (B =1.845084
and ¥ = 0.520862). Just looking at the shape of the likelihood surface, and its elongated contours, the-
re is evidence of the close relationship between parameters [3 and y. Nevertheless, the region of plausi-
ble values for both parameters is clearly into the plots limits. In this case, profile likelihood functions for
B and 7y are well-behaved, in the sense that they grow, reach a maximum and then decrease; see Figu-
re 2(a)-(b). The 95% confidence intervals for § and y are (g (c = 0.146;x) = [1.644828,2.063218] and
Cy(c =0.146;x) = [0.3068966,0.7609195], respectivamente.

It is important to note that in many applications, where parameters of differential equation models are esti-
mated, only data with an increasing behavior are available or used, data that apparently have already reached
a peak. In the following example we simulate this kind of scenario, assuming that only 40 % of the obser-
vations are available; that is, only the first four observations in Table 1, x = (2,12,59,130) are known.
Now, Figure 3 shows the relative likelihood function for (B,Y) and its corresponding contour plot; in this
plot the ¢ = 0.05 contour level is marked with a dashed line and the MLE is indicated with an asterisk
(B = 1.9047994 and ¥ = 0.5635199). In this case, the resulting contours are even more elongated than those
obtained when considering the 100 % of the simulated sample, emphasizing again the close relationship bet-

ween both parameters, § and y. Now, the region of plausible values for both parameters is truncated within
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Table 1: Simulated sample from a SIR-Poisson distribution with f = 1.786946, y= 0.4761905, N =763, Iy = 1, and Sy = 762.

i 1 2 3 4 5 6 7 8 9 10
|1 2 3 4 5 6 7 8 9 10
xi | 212159 | 130 | 206 | 171 | 92 | 42 | 19 8

o _ 1.0
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o 08
(_,"E S
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3 ° & 02
o) N
e N
o 0.0
T T 17T 177
15 17 19 21

p

Figure 1: Likelihood surface and contour plot for the relative likelihood of (B,7), corresponding to data presented in Table 1. The
grayscale bar shows different values for the relative likelihood; the 95 % confidence region is plotted with a dashed line, at

¢ = 0.05 contour level, and the MLE is marked with an asterisk. Source: Elaborated by the authors.

the limits of the plots. This can be better observed in the profile likelihood functions of both parameters,
plotted in Figure 4(a)-(b); particularly, the y profile likelihood function assigns a high plausibility to those
vy values close to zero. Note that due to the intrinsic relationship exhibited by both parameters, the  profile

likelihood function also presents a similar behavior. The upper limits of the 95 % confidence intervals for
and y are 2.925301 and 1.656964, respectively.

Now, regarding the model reparameterization (3, Rp), the shape of the likelihood surface is much flatter than
the observed in the other cases, with elongated and curved contours, as can be seen observed in Figure 5.
This plot shows that the likelihood function has a ridge, with a relatively flat top.
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Figure 2: Relative profile likelihood functions for § and v, based on the simulated data presented in Table 1. In both cases, (a) and
(b), the 95 % confidence intervals are indicated in brackets, and the MLE is marked with an asterisk. Source: Elaborated by the
authors.

The profile relative likelihood of Ry, that is shown in Figure 6, illustrates this kind of flatness, where the
likelihood increases until reaching its maximum, decreasing then slowly; actually, plausibility of Ry = 6
and Ry = 10 are 0.85 and 0.72, respectively. The lower limit of the 95 % confidence interval for R results
1.769076.

When for a fixed data set we observe two different parameter values giving rise to the same likelihood
(probability of observed data), then it results practically impossible to distinguish between these two
parameter candidates, based on the data alone; thus, it would be not feasible to identify the true parameter
value. In that sense, when the relative profile likelihood function of Ry is flat over a wide range of R values,
including the MLE such as in Figure 6, then the probability of the observed sample is the same over all
this Ry value set. Therefore, the lack of identifiability of this parameter occurs at least for the observed data.
Now, since the profile likelihood function for the parameter of interest is invariant under reparameterizations
of the nuisance parameters, then, the plot of the profile likelihood function of Ry will not change under
reparameterizations of (j3,7).

pagebreak

Sprott (2000, p. 11) stated that the MLE and the observed information exhibit two important features of the
likelihood function, the MLE as a measure of its location relative to the parameter-axes, while the latter as
a proxy of its curvature, in a neighborhood of the MLE. Thus, when the likelihood function of a scalar pa-

rameter is smooth and symmetric around the MLE, then the MLE and the observed information are usually
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Figure 3: Likelihood surface and contour plots of the relative likelihood of (B,7) corresponding to x = (2,12,59,130) data in Table
1. Grayscale bar shows different relative likelihood values; the 95 % confidence region is denoted with a dashed line at ¢ = 0.05

contour level, whereas the MLE is marked with an asterisk. Source: Elaborated by the authors.

the main features that determine the shape of the likelihood function. However, it should be stressed that flat
likelihoods can not be determined by these quantities, without loss of information.

Intuitively, the sensitivity of the MLE depends on the shape of the likelihood function. If the Ry likelihood
is very curved around MLE, then, a stable estimate of Ry is obtained. On the other hand, if the likelihood is
flat near the MLE, this estimate becomes highly unstable. Beside these facts, it is important to mention that
a flat likelihood can lead to Ry likelihood-confidence intervals whose upper limit becomes infinity.
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Figure 4: The relative profile likelihood function of 3 and 7 for the simulated data x = (2,12,59,130) in Table 1. In both cases, (a)
and (b), the upper limit of the 95 % confidence interval is denoted with a bracket, whereas the MLE is marked with an asterisk.
Source: Elaborated by the authors.
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Figure 5: Likelihood surface and contour plots of the relative likelihood of (B, Rp), corresponding to x = (2,12,59,130) data in
Table 1. Grayscale bar shows different relative likelihood values; the 95 % confidence region is denoted with a dashed line at

¢ = 0.05 contour level, whereas the MLE is marked with an asterisk. Source: Elaborated by the authors.
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Figure 6: Relative profile likelihood function of Ry for simulated x = (2,12,59,130,206) data in Table 1. The upper limit of the
95 % confidence interval is indicated with a bracket and the MLE is marked with an asterisk. Source: Elaborated by the authors.
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4. FLATNESS OF THE RELATIVE PROFILE LIKELIHOOD OF R,

In this section we will conduct some experiments, in order to analyze how the shape of the Ry profile like-
lihood function changes, as the observed sample size varies over time. For that purpose, we will examine the
distribution of the relative profile likelihood function of Ry, evaluated at different values, all of them larger
than the nominal ones used in the simulation scenarios. In particular, we are interested in analyzing the seve-
rity of the flatness of the profile likelihood of Ry, when the observed sample (over time) produces ambiguity
regarding the shape of the average behavior of the SIR-Poisson model. Furthermore, in all experiments con-
sidered here, we will compute the coverage frequency of the likelihood-confidence regions for (§,Rp), B and
Ry, in order to study the effect that flat likelihoods could have on the coverage probabilities of these intervals.

In this simulation study we consider 5000 SIR-Poisson samples of sizes n; =40 %n, n, = 60 %n, n3 = 80 %n,

and n4 = 100 %n, simulated according the following scenarios for n and Ry:

= Case 1,n =23 and (B,y) = (0.893473,0.4761905), that yields n; =9, n = 14, n3 = 18, and nq = 23,
and Ry = 1.876293.

= Case 2, n =10 and (B,7) = (1.786946,0.4761905) that yields n; =4, n, = 6, n3 = 8, and n4 = 10,
and Ry = 3.752587.

= Case 3,n="7and (B,7) = (2.680419,0.4761905) that yields n; = 3, n, =4, n3 = 6, and ny =7, and
Ry = 5.62888.

In our simulation scenarios, samples of size n were selected in such a way that maximum is already reached
and I (n) /max{I(r)} ~ 0.31, where I (¢) is the solution of the SIR model. Figure 7 shows the SIR model
solution I (¢), for each of the Ry values considered in our simulation cases. It is noteworthy that the n selected
values in our simulation experiment allow that A;, the mean of the SIR-Poisson model given in (1), grows
until reaching its maximum, decreasing later to values close to zero. In this way, n; = 40%n, n, = 60 %n,
n3 = 80%n, and nqy = 100 %n, represent observed sample sizes that produce a gradient of information asso-

ciated to different ambiguity levels regarding the shape of the average behavior of the model.

Based on the simulated samples, we compute the coverage frequency of the likelihood confidence regions
Cip.Ry) (0.05:X), Cip) (0.146;X) and Cg,) (0.146;X ), whose nominal coverage probability is 95 %. Further-
more, for each simulation experiment we also computed the empirical distribution for Ryax (Ro = Rg X ),
where Rg =10, R(l)] =15, and Rg = 20. It is worth mentioning that MLEs were estimated using the cons-
trOptim function of the R 4.0.3 version software, and that all results were obtained considering only tho-
se samples where the constrOptim function yielded a successful performance of the Nelder and Mead
optimization method. For example, in Case 1 (B,y) = (0.893473,0.4761905) with n = 9 and Case 2
(B,Y) = (1.786946,0.4761905) with n = 4 convergence of the method was obtained for the 95 % and 99 % of

all 5000 simulated samples. In all remaining scenarios, 100 % of simulated samples successfully converged.
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Figure 7: I(t) solutions for the SIR model for different Ry values considered in simulation scenarios. Source: Elaborated by the
authors.

As can be observed in Table 2, in all cases the coverage frequency of the likelihood-confidence regions for
the SIR-Poisson model parameters is close to the 95 % nominal probability coverage. On the other hand, it
can be observed in Figures 8 to 10, that those scenarios where sample size yield ambiguity regarding the
shape of the average behavior of the SIR-Poisson model, the median of the distribution of Ryax (Ro = Rg X )
in Ry =10, Ry = 15, and R = 20 takes positive values that are far from 0, with a downward trend the-
reafter, though slightly leaning, allowing to infer that the shape of the Ry relative profile likelihood function

becomes fundamentally flat for Ry € [10,20].

For instance, in all cases (Case 1-3) where sample size is n; = 40 %n, the 0.35 level quantile of the ROU
empirical distributions was larger than the relative likelihood level at ¢ = 0.146. That is, each one of the
corresponding samples yielded 95 % confidence intervals for Ry, where the interval upper limit was greater
or equal to RY = 20. This result can be considered as uninformative, given the fact that real Ry values were
1.876293, 3.752587, 5.62888, and almost absurd in the practical context of an epidemic. On the other hand,
for all scenarios in cases with 100 %n and R([)J = 20, is clear that at least 91 % of the times, the 95 % confi-

dence intervals for Ry have a finite upper limit, less than Rg = 20; thus, Rmax (Ro = 20;x) was less or equal

than the relative likelihood at ¢ = 0.146 level.
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Table 2: Coverage frequency of the likelihood-confidence regions for the SIR-Poisson model parameters.

(B,’Y) — Ro = B/’Y n C(|3,R0) (0.0S;X) C([g) (0.146;X) C(Ro) (0.146;X)

96.58 97.36 97.30

(0.893473,0.4761905) — Rp = 1.876293 | 14 95.34 95.24 95.52
18 95.58 95.40 95.40

23 95.40 95.32 95.78

4 96.88 97.89 97.75

(1.786946,0.4761905) — Ry = 3.752587 | 6 94.78 94.74 95.32
8 94.86 94.72 94.72

10 94.92 94.82 94.60

3 95.74 96.62 96.38

(2.680419,0.4761905) — Ry = 5.62888 4 94.80 95.18 95.00
6 94.78 94.88 95.14

7 94.36 94.24 94.52
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Figure 8: Box plots for Rmax (Ro = Rg) from simulated data under Case 1 parameter values. Source: Elaborated by the authors.
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Figure 10: Box plots for Rmax (Ro = Rg ) from simulated data under Case 3 parameter values. Source: Elaborated by the authors.
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5. SOME ESTIMATION PROCEDURES IN THE PRESENCE OF FLAT
LIKELIHOODS

In this section we describe three common parameter estimation approaches, basically applied to the SIR-
Poisson model in the presence of flat likelihoods, an indication of a lack of parameter identifiability situation,
based on the sample. One approach involves setting values to unknown parameters; another one concerns
with estimating the growth rate & = 3 —y of the SIR model, assuming a data exponential growth. The third
one uses Monte Carlo simulations, based on prior knowledge of the parameter distributions of the SIR

model. In addition, we emphasize the impact that these practices can have on Ry inferences.

5.1. Setting values to unknown parameters

In literature concerning parameter estimation in differential equations, the practice of setting values to an
unknown parameter stands out (Khan et al., 2014; Funk et al., 2016; Gui-Quan et al., 2017; Ghosh et
al., 2017; Vinh et al., 2018; Guanghu et al., 2019). In general, assigning values to an unknown para-
meter in a model, in order to estimate some other parameters of that model, causes statistical inferen-
ces (estimators, confidence intervals, precision, coverage probability, etc.) to depend on the selected pa-
rameter values, that are considered to be known. Our model under study, a SIR-Poisson distribution, is
not an exception. To clarify this situation, we will just consider the observed SIR-Poisson model sample
x=(2,12,59,130), which represents 40 % of a simulated sample from a SIR-Poisson distribution with vec-
tor parameters (B,Ro) = (1.786946,3.752587), N = 763, and initial conditions Iy = 1 and Sy = 762. The
likelihood functions linked to this sample were shown and described in Section 3. In particular, it was stated
that the likelihood of (B3, Ry ), shown in Figure 3, displays a flat surface with elongated and curved contours,
indicating the strong relationship between these parameters, based on the observed sample. Moreover, the
relative profile likelihood of Ry grows until achieving its maximum, decreasing slowly thereafter and assig-
ning high plausibility values (close to 1) not only to true R value, but also to some larger values like Ry = 6
and Ry = 10 (with plausibility 0.85 and 0.72, respectively).

In this particular case, setting parameter f in a fixed and known value * yields a likelihood L (Rp;x) =
L(B = B*,Ro;x) that only depends on Ry, the parameter of interest. Figure 11 shows the corresponding rela-
tive likelihood, standardized to one at its maximum, for different 3 values (included By = 1.786946, the true
value used in data simulation). Now, just for the sake of comparison, R relative profile likelihood function

and the true Ry value are marked in this figure.

From this plot becomes clear that inferences are almost completely determined by the value that is specified
for B, and only the likelihood corresponding to 3 = By assigns a non-negligible plausibility to the true Ry
value. Moreover, the three B specified values give rise to likelihoods with different amplitudes, yielding
different precision in the likelihood-confidence intervals for Ry, that are constructed considering the same

relative likelihood level 0 < ¢ < 1. In fact, these amplitudes are determined by the relationship between 3
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Figure 11: Relative likelihood function of Ry for different [ values (B = 1.85, B = By, and B = 2.5), and relative profile likelihood
function of Ry. True Ry value is marked with a black dot. Source: Elaborated by the authors.

and Ry, displayed in the contour plot of Figure 5. It is worth mentioning that simulated samples from pre-
vious section (Case 2, with n = 4) were used to estimate the coverage probability of the 95 % confidence
intervals for Ry that these likelihoods yield. Coverage frequencies associated to B* = 1.65, 1.786946, and

2.5 were 2.8 %, 95.38 % and 0 %, respectively.

5.2. Estimation of 5 = J —y assuming an exponential growth model

Another approach for estimating parameters of differential equations is to estimate the parameters of a gene-
ral model, but considering a simpler model for that data; one containing fewer parameters that are apparently
involved in the general model. For example, many authors propose compartment models for the dynamics
under study using an exponential growth model, where the growth rate § is estimated independently from
the general model (Chowell et al., 2007; Chowell et al., 2012; Towers et al., 2016). Once J estimates are
obtained, they are used to set the parameter values of the general compartment model. However, a problem
with this practice is that estimating 3, based on an exponential growth model, does not consider the intrinsic
relationship between the parameters of the general differential equation model, originally proposed to mo-
del the dynamics under study. Consequently, inferences about these parameters could be very different from

those that would be obtained if & were estimated with the general compartment model.

We show this estimation approach considering the SIR model presented in (2), as a general model, and using
a Poisson distribution with mean f (#;9) to fit the observed data {(t;;x;) };_,, where In (f (#;8)) = In (o) + &,

91

V 11 N°2 julio-diciembre de 2022 o ISSN-e 2357-5749 & DOI: https://doi.org/10.15446/rev.fac.cienc.v11n2.100986 e Research paper



José A. Montoya, Gudelia Figueroa, Mayra Tocto Erazo

d is the parameter that describes the growth rate in this exponential model, Iy is the number of initially
observed cases, and x; is the number of new cases during the time interval (¢,_1,#;]. In this case, the likelihood

function of §, that yields this exponential growth model is

n n
Ly (8) o< exp (82@-)@) exp [—I() Zexp (St[)] . 9)
i=1 i=1
Moreover, we will use the data setx = (2, 12,59, 130), presented in previos subsection, in order to compare
d inferences that arise from Lgy, (8), given in (9), against those inferences arising from the profile likelihood
function of the exponential growth rate B —y (Ma, 2020), of the SIR model given in (2). In particular, and
with certain notation abuse, this profile can be obtained by simply reparameterizing the SIR model with
parameters 3 and v, in terms of new parameters [ and & = 3 — vy (that is, Y= B — 9), and then maximizing on
B for each fixed d value.

Figure 12 shows the relative version of (9), standardized to be one at its maximum. Moreover, and just for
a comparison purpose, the d profile likelihood function based on the SIR-Poisson model is also included
in this figure, where the true J value, obtained as the difference between B and v true values, and used for
data simulation, is marked with a black dot. In this figure we can observe that the relative likelihood of 9,
yielded by the exponential model R, (8), is narrower than the profile likelihood of 8, and is located to its
left. Moreover, Rgy, (8) assigns negligible plausibility to many & values that are plausible under the profile
likelihood, included the true & value. It is important to note that Case 2 simulated samples with n = 4 were
also used here, in order to estimate the coverage probability of the 95 % confidence intervals of 9, yielded
by Rg.p, (6) and & profile likelihood functions (this last one computed under the basis of the SIR-Poisson
general model). The resulting coverage frequencies associated to Rg,, (8) and the profile likelihood were
0.04 % and 95.38 %, respectively.

5.3. Monte Carlo Simulation

Another approach to estimate the basic reproductive number Ry, of a system of differential equations with
parameter 0, involves obtaining a mathematical expression for Ry = h(0), where A (-) is a function of 6,
and assume a joint distribution F (-) for this parameter, that allows to generate 0;,0,,- - -, 0y values, that are
evaluated in 4 (-) in order to obtain Ry, Ro1,Ru, - - ,Rom values of the parameter of interest. These values
are used to estimate the distribution of the basic reproductive number and to construct confidence intervals
for Ry.

A difficulty that arises when trying to properly apply this practice, is obtaining a joint distribution F () that
rescues the intrinsic relationship between the parameters of the differential equation model, that is proposed
to model the dynamics of the phenomenon under study. Typically, according to literature on differential
equation parameter estimation, it is common to make literature reviews to collect information about an

estimated range for the parameters of the differential equation model, and use this information to propose
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Figure 12: Relative likelihood and relative profile likelihood functions of 3, obtained from a model with an exponential growth.
True § value is marked with a black dot. Elaborated by the authors.

independent distributions for each of the model parameters (Pandey et al., 2013; Camacho et al., 2014; Funk
et al., 2016; Saldafia et al., 2020).

It is also common to combine the approach described in the previous section and use the asymptotic dis-
tribution of the & MLE, the parameter representing the growth rate of the exponential model, instead of a
uniform distribution (Chowell et al., 2007; Towers et al., 2016).

Intuitively, setting aside the relationship between model parameters and assuming independence in order
to construct F (8), causes that implausible 8 values become considered in the calculation of Ry, and that
occurs given the intrinsic relationship between model parameters. In addition, misspecification of any of
the parameter distributions may lead also to inaccurate inferences. To exemplify this practice and the kind
of results it can yield, we will consider the SIR model in (2), but reparametrized in terms of 6 = (j3,9).
To specify 6 = (B, 9) distribution, we assume independence and propose a uniform distribution (1.2,2) for
B, in such a way that this interval includes true 3 = 1.786946 value. On the other hand, we use a normal
distribution N (g, 82) for 8, whose mean 8 = 1.240564 and variance G2 = 1.240564 are the MLE of & and
the Fisher information inverse, respectively; both obtained through the likelihood given in (9). Considering
the proposed distributions, M = 10000 random samples for  and & were simulated; in all cases it occurred
that B > §, obtaining then 10000 computations of Ry = 3/ (B — 3), which were used to build the histogram
shown in Figure 13, where true Ry value is marked with a black dot. It is interesting to observe that this
frequency distribution is mainly concentrated into the interval (2.604502,3.480875), whose lower and up-
per limits are the 2.5 % and 97.5 % probability quantiles, respectively, and this interval does not include true
Ry = 3.752587 value.
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Figure 13: Histogram of R values obtained from the simulation of 1000 random samples of 3 and 8. True Ry value is marked with
a black dot. Elaborated by the authors.

6. CONCLUSIONS

The shape of the likelihood function helps to detect practical parameter identifiability problems, revealing
the intrinsic relationship of model parameters, in light of the observed sample. Moreover, the profile li-
kelihood function allows to visualize and analyze the severity of the identifiability problem for a scalar
parameter of interest, associated to the model under study, such as Ry, the basic reproductive number.

In the cases studied here, narrow likelihood surfaces with elongated or curved contours exhibit the problem
of practical identifiability, whenever one of their tails does not stop decreasing and the surface plot appears
to be truncated or cutoff within the parameter space. In general, much of the corresponding trajectory of the
ridge or peak of the likelihood surface is nearly flat or constant, assigning to these points a plausibility as
high as that of the MLE. Thus, fixing one parameter and maximizing the likelihood surface regarding some
other one, is the way how the profile likelihood provides information about the ridge likelihood surface

flatness.

In our simulation study, occurrence of the practical identifiability problem did not affect the coverage fre-
quencies of the likelihood-confidence regions, that were always close to the nominal coverage probability.
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On the other hand, the vast majority of practical parameter identifiability problems occurred when the ob-
served sample of the SIR-Poisson model came from the initial and increasing part of the mean of the model,
over time. In these cases, flat likelihoods can be interpreted in the sense that data do not provide sufficient
information to discern about the shape of the average model behavior, over time. Thus, there are many pa-
rameter combinations yielding average behaviors that make the observed sample as likely as the average
behavior associated with the MLE.

The methods discussed here for dealing with the practical identifiability problem should be cautiously used.
Setting parameters can lead to false inference precision, also called overestimation or spurious accuracy. On
the other hand, parameter estimation in systems of differential equations, with lack of consideration on the
mathematical structure and the underlying parameters relationship involved in such a model, in light of the

data, may lead to inappropriate inferences.

Perhaps, a strategy for obtaining prior information concerning the parameters of the model, in order to rescue
their relationship, would be to consider general restrictions regarding the characteristics of the phenomenon
under study, this could allow to generate feasible solutions of the system of differential equations, and from
these to determine the values of the parameters that generated them, and use that information to propose a
joint prior distribution. There is also the possibility of using this joint prior distribution in a Bayesian infe-

rence framework.

Extreme care should be taken when applying the estimation practices identified in this article, as they
may lead to inappropriate conclusions about the basic reproductive number value, as well as the scenarios
projections of an epidemic, among others. The latter becomes highly relevant when resulting estimates are
used in public health decision making.

Perhaps the support and knowledge of experts in the field of the phenomenon being modeled can help to
make better decisions to identify the relationship between the parameters of the model, and hence achieving

the formulation of more appropriate hypotheses regarding the phenomenon under study.
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