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ABSTRACT: Grouped data refers to continuous variables that are partitioned in intervals, not necessarily

of the same length, to facilitate its interpretation. Unlike in ungrouped data, estimating simple summary

statistics as the mean and mode, or more complex ones as a percentile or the coefficient of variation, is

a difficult endeavour in grouped data. When the probability distribution generating the data is unknown,

inference in ungrouped data is carried out using parametric or nonparametric resampling methods. However,

there are no equivalent methods in the case of grouped data. Here, a bootstrap-based procedure to estimate

the parameters of an unknown distribution based on grouped data is proposed, described and illustrated.

KEYWORDS: Bootstrap, estimation, grouped Data.

RESUMEN: Los datos agrupados se refieren a variables continuas que se dividen en intervalos no ne-

cesariamente de la misma longitud para facilitar su interpretación. Contrario a lo que ocurre en datos no

agrupados, la estimación de simples estad́ısticos de resumen como la media o la moda, o más complejos como

un percentil o el coeficiente de variación, es una tarea dif́ıcil en datos agrupados. Cuando no se conoce la

distribución de probabilidad que genera los datos, la inferencia en datos no agrupados se realiza utilizando

métodos paramétricos o no paramétricos de remuestreo. Sin embargo, no existen métodos equivalentes para

datos agrupados. En este documento se propone, describe e ilustra un método basado en bootstrap para

estimar los parámetros de una distribución desconocida a partir de datos agrupados.
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1. INTRODUCTION

Data are present in many shapes and with as many variables and observations as one can imagine.

Two of the most frequent presentations of data are (1) the raw format, in which observations (i.e.,

subjects) are represented as rows and variables as columns; and (2) the frequentist or interval

format, also known as grouped data, in which, for a particular variable, the number of observations

falling in a particular class interval (or bracket) is given in Table 1.

Table 1: Classical representation of univariate grouped data.

Interval Frequency

[a1, b1) n1

[a2, b2) n2

⋮ ⋮
[ak, bk) nk

Total n

Raw data are faced the most by researchers when applying statistical methods and reporting re-

sults. However, there are several situations in which researchers have data in interval format. Some

examples of this include the age distribution in a sample of people covered by health insurance (i.e.,

25-34, 35-44, 45-54 and >55 years old), the number of hours worked per week (i.e., 0-9, 10-19, 20-29,

and >30 hours) by part-time employees, and the time taken to complete a task (i.e., 5-10, 10-15,

15-20 and >20 seconds) of people participating in a psychology experiment. As shown in Table 1, a

total of n individuals are sampled from the population and the number of them falling on a specific

class interval is registered.

Given a random sample of size n, the main goal in applied statistics is to make inferences about

a parameter of interest, say θ. This parameter can be a scalar (i.e., the population mean µ, or

the population variance σ2) or a vector (in a multivariate setting). For illustration purposes, let us

consider the simplest case in which a random variable X is measured in a sample of n individuals

to obtain the random sample x = (x1, x2, . . . , xn). Suppose that fX(x∣θ) is the probability density

function of X with parameters θ = (µ,σ2), and that θ̂ is its sample estimator such that θ̂ → θ

as n → ∞ almost surely. When the data is not grouped, to make inference about θ is straightfor-

ward and most of the statistical methods already available can be applied without difficulty. For

instance, if we were interested in constructing a 95 % confidence interval for the true population

mean µ based on a random sample of size n, it would be enough to compute an interval of the

form (µ̂ − k σ̂, µ̂ + k σ̂), where µ̂ is the sample estimator of the population mean, k is a constant

that depends on the confidence level and the sample size n, and σ̂ is the sample estimator of the

standard deviation σ (in general, µ̂ and σ̂ are unbiased estimators of the corresponding population
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parameters). Similarly, hypothesis testing and other inferential work can be built upon this same

principle.

However, when the sample information for X has been grouped (i.e., the random sample is grouped

in k mutually exclusive intervals of some sort as those shown in Table 1), to make inference about

θ can become difficult. There are several reasons for this. First, calculating the estimators for po-

pulation parameters can not be carried out in the same way as if the data were ungrouped. Second,

little progress has been made by classical frequency statistics on grouping. Today, the major results

are that moment-based statistics are inconsistent, but that maximum likelihood, at least in the

normal and exponential cases, is consistent and efficient. Furthermore, to make inferences about

(not necessarily linear) combinations of the parameters (i.e., the ratio µ/σ) sets more complex

challenges (Heitjan, 1989). Thus, if the researcher wanted to estimate θ or functions or combina-

tions of it, the available methods to accomplish this task cannot, in general, be used. Although

some advances have recently been made and applied to income data as illustration (Hajargasht

et al., 2012), much research remains to be done to establish a general approach that works in most

situations. Tables constructed from continuous data (see Table 1) can be thought as histograms

that are density estimators. When the original individual data is available, theoretical and practical

methods have been proposed for constructing optimal histograms (Scott, 1979; Taylor, 1987; Ka-

nazawa, 1992; Wand, 1997; Scott and Scott, 2008).

Bootstrap is a powerful technique for finding, via resampling, either the sampling distribution, or

the error of an estimator (or a function of it), either of which can be difficult to obtain analytically

(Efron, 1979). Since its origins, the bootstrap has extensively been studied by many researchers

and its application has been extended to all statistical areas. As the sampling distribution, the

error of an estimator and confidence intervals constitute an important and direct byproduct of the

technique (Efron, 1987; Hinkley, 1988; Efron, 2003; DiCiccio and Efron, 1996; Letson and McCu-

llogh, 1998; Carpenter and Bithell, 2000; Davison, Hinkley and Young, 2003). In the case of grouped

data, the bootstrap provides an easy way to calculate the sampling distribution of θ̂ or any function

of it, say h(θ̂).

In this paper we propose a bootstrap-based methodology to make inference about θ when grouped

data is available, and which works well in general situations. The paper is organized as follows.

First, we briefly described grouped data and how some summary statistics are calculated. Second,

we present bootstrap-based methodology by describing a step-by-step general procedure on which

our proposal relies. Third, three examples are given to illustrate the usefulness of our proposal. In

order to facilitate the implementation of methodology proposed herein, an implementation in R (R

Core Team, 2015) can be obtained from the first author by request.
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2. GROUPED DATA FROM AN UNKNOWN PARAMETRIC

DISTRIBUTION

Let X be a continuos random variable with unknown probability distribution fX(x∣θ), where θ ∈ Ω

the parameter vector, and suppose that x = (x1, x2, . . . , xn), a random sample of size n, is drawn

from fX(x∣θ). Furthermore, suppose that xj , j = 1,2, . . . , n, is classified in one of k possible mutually

exclusive categories, with the ith category defined by the half-open interval [ai, bi), and the midpoint

of the interval is mi = (ai+ bi)/2, i = 2,1, . . . , k. A representation of this set up is presented in Table

1. Note that the number of observations in the ith category is ni and the sample size is n = ∑ki=1 ni.

It is also worth mentioning that the width of the intervals need not be the same.

2.1. Location statistics

We consider the case where the researcher does not have the raw data, but a tabulated version of it

(as in Table 1), and it is of interest to estimate a location parameter θ. In what follows, we address

how to estimate θ when grouped data is available. How to perform inference on θ is discussed in

§3.

For grouped data the mean and median can be calculated as (Pierce, 2014):

x̄G = ∑
k
i=1mi ni
n

, x̃G = a + n/2 − Fb
nm

w, (1)

where a is the lower limit of the interval containing the median, Fb is the cumulative frequency of

the groups before the median interval, nm is the frequency of the median group and w is the group

width. On the other hand, the mode can be calculated as (Pierce, 2014):

x̊G = a + nm − nm−1

(nm − nm−1) + (nm − nm+1)
w, (2)

where a is the lower limit of interval containing the modal group, w is the width of the modal

group, and nm−1, nm and nm+1 correspond to the frequency of the group before the modal group,

the modal group and the group after the modal group, respectively.

2.2. Dispersion statistics

Just as in ungrouped data, it is also possible to estimate dispersion statistics for grouped data. Some

of these statistics include, among others, the variance, the standard deviation and the coefficient

of variation.

The sample variance is calculated as (On, 2002):
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s2
G = ∑

k
i=1 nim

2
i

n
− x̄2 (3)

and the sample standard deviation as sG =
√
s2
G. It is important to mention that s2

G is not a

good estimate of σ2 = Var[X], but s2
G − h2/12 is, where h is the width of the intervals for X (see

Heitjan (1989) for more details). Last, but not least, the sample coefficient of variation (CVG) can

be calculated as

CVG = sG
x̄G

⋅ (4)

3. BOOTSTRAP-BASED INFERENCE FOR GROUPED DATA

In this section, we propose and describe our bootstrap-based method to make inference about an

unknown parameter θ using grouped information as in Table 1. As previously mentioned, the data

consist of k mutually exclusive categories and, despite that they can be identified within a set of

possible values, individual observations (or values) are not exactly known. A direct implication of

this is that a set of different values of a variable can be interpreted as being the same just because

they fall in the same class interval. However, if the set of values fall in the same group it does not

imply, by any means, that they are identical. Similarly, if in a two-dimensional scale two observa-

tions lie in the same category, it does not mean they are identical, but that their dimensions were

found to lie in the same bracket for both scales (Heitjan, 1989).

Provided that fX(x∣θ) is unknown, we propose the following algorithm to perform the bootstrap-

based inference about θ or a function of it, when grouped data is available:

1. Draw a random sample of size n from a multinomial distribution with probabilities ni/n,

where ni is the number of observations in the ith interval (i = 1,2, . . . , k; see Table 1 for more

details).

2. Let n
(b)
1 , n

(b)
2 , . . . , n

(b)
k be the bth bootstrap frequency table (b = 1, . . . ,B). For the ith half-open

interval [ai, bi), generate a random sample of size n
(b)
i from a uniform distribution U (ai, bi).

Denote this sample as x(b) = (x(b)1 , x
(b)
2 , . . . , x

(b)
n ), i = 1,2, . . . , k; b = 1,2, . . . ,B.

3. For the bth bootstrap sample x(b), compute the test statistic T (x(b)), b = 1,2, . . . ,B. Note

that the test statistics T1, T2, . . . , TB will be available for further analyses. Here, Tb refers to

the test statistic calculated on x(b).

4. Construct the sampling distribution of T (⋅) based on T1, T2, . . . , TB.

The algorithm described above could be seen as a three-step sampling strategy. In the first step,

a new sample size is generated for each of the k mutually exclusive categories (or intervals) in
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which the data has been broken down. Secondly, based on those sample sizes, we randomly gene-

rate observations within each bracket. Last but not least, a test statistic T (⋅) is calculated for each

complete bootstrap sample to construct its sampling distribution. As a by product of this latter

step, inferences about θ or a function of it, h(θ), can be made.

It is worth mentioning that when fX(x∣θ) is known (i.e., it can be assumed that observed table is

generated from a known theoretical parametric model), both the estimation and inferential problems

become an estimation problem where all observations are doubled-censored. For more on this topic,

we encourage the reader to review the work by Zhan and Wellner (1995).

4. EXAMPLES

In this section we present three examples to illustrate the usefulness of our proposed method.

Example 1. We collected the weight, in grams, of n = 159 coins of COP$100 currently circulating

in Colombia as part of a random academic experiment. The weights categorised in seven equally

spaced class intervals are presented as follows:

Table 2: Weight of COP$100 coins (in grams).

Interval Frequency

5.00−5.15 2

5.15−5.20 7

5.20−5.25 29

5.25−5.30 60

5.30−5.35 50

5.35−5.40 9

5.40−5.45 2

Let X be the the weight of a coin in grams, and suppose we are interested in constructing a

95 % confidence interval for the mean (µ), standard deviation (σ) and the coefficient of varia-

tion (CV ). Following the algorithm described in §3, we generated B = 10,000 bootstrap samples

from a multinomial distribution of size n = 159 where the probabilities of all cells were given by

π̂ = (2/159,7/159,29/159,60/159,50/159,9/159,2/159). Further, a sample of size ni from a uniform

distribution U(ai, bi) was drawn (i = 1,2, . . . ,7). Observe that, at the end of this process, a total of

B random samples of size n = 159 are generated from fX(x∣θ). The corresponding 95 % confidence

intervals are µ ∈ (5,273,5,291), σ ∈ (0,048,0,065) and σ2 ∈ (0,009,0,012).

Example 2. Harrell and Davis (1982) proposed a distribution-free estimator of the median given

by
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0.9994 0.9998 1.0002 1.0006
x~ Q

Figure 1: Sampling distribution of x̃/Q for the coin data presented in Table 2. The red and blue vertical

lines correspond to the 95 % confidence interval and the individual values, respectively.

Q =
n

∑
i=1

Wn,iX(i), Wn,i =
Γ (n + 1)
Γ (n+1

2
)2 ∫

i/n

(i−1)/n
[z (1 − z)](n−1)/2 dz. (5)

Vélez and Correa (2014) have recently shown that Q has a lower mean squared error than the

classical estimator of the median when the sample size is small (i.e., n < 50). Observe that, with

grouped data, the calculation of the Q statistic is not straightforward. However, using our proposed

method this calculation becomes simple. Furthermore, it is also possible to derive the sampling

distribution of more complex statistics such as x̃/Q, where x̃ is the sample median. Using the data

in Table 2, the sampling distribution of µ̃/Q was obtained (see Figure 1). It follows that a 95 %

confidence interval for µ̃/Q is (0.9996, 1.0003). Similarly, µ̃ ∈ (5,276,5,288) and Q ∈ (5,278,5,288).

Example 3. For ungrouped data, the sample kurtosis can be calculated as

β̂2 =
n∑ni=1(xi − x̄)4

{∑ni=1(xi − x̄)2}2
− 3 (6)

and similar expressions can be found for grouped data. Let βG2 be the equivalent kurtosis coefficient

for grouped data. Using the data in Table 2 and our bootstrap-based approach, β̂G2 = 1,716 and the

corresponding 95 % confidence interval is (0,109,3,393).

5. DISCUSSION

When data about a continuous variable is presented in form of a histogram or table, the estimation

of certain characteristic of interest could be a difficult task. In this paper, we have proposed a
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bootstrap-based methodology that is easy to interpret and implement, and computationally fea-

sible. Three examples are presented to illustrate the usefulness of our method in situations often

encountered by data analysts, and in which it would have been almost impossible to construct

confidence intervals for the parameters of interest otherwise.

Future topics of research might include the construction of other types of confidence intervals and

the natural extension of our methodology to bivariate or p-variate grouped data. Another topic

worth looking at is the comparison between the results obtained with the method proposed herein,

and those obtained when the data is not grouped. One alternative to tackle this would be to control

the sample size n, generate continuous data from a known distribution with specific parameters,

choose a number of categories k, estimate a statistic of interest with both the grouped and ungrou-

ped data, and compare both values (i.e., using the mean squared error). By doing this, it would

not only be possible to evaluate the performance of the bootstrap-based method proposed in this

paper and those already established (i.e., central limit theorem [CLT]), but also to determine the

optimal number of classes, k0, needed to obtain at least comparable results between our method

and the CLT.
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