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ABSTRACT: In this paper, we analyze a flat likelihood function shape that arises when performing inferences on the
ratio of two regression coefficients in a linear regression model, parameter of interest in various applications. Due to
this shape, infinite length likelihood-confidence intervals can be obtained. In the cases discussed here these likelihood-
confidence intervals are related to the nested models problem, which is analyzed in detail through three illustrative
simulated cases. It is essential to understand the shapes of the likelihood function in order to legitimately criticize
likelihood inferences. This is of particular importance since the likelihood function is a key ingredient used in many
inference methods.
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RESUMEN: En este articulo se analiza una forma plana de la funcién de verosimilitud que surge cuando se realizan
inferencias sobre la razén de dos coeficientes de regresion en un modelo lineal, pardmetro de interés en diversas
aplicaciones. Debido a esta forma pueden obtenerse intervalos de verosimilitud-confianza de longitud infinita. En los
casos que se discuten aqui, estos intervalos de verosimilitud-confianza estdn relacionados con el problema de modelos
anidados, que es analizado a detalle a través de la simulacidn de tres casos ilustrativos. Es fundamental comprender
las formas de la funcién de verosimilitud para criticar de manera legitima las inferencias por verosimilitud. Esto es
de particular importancia ya que la funcién de verosimilitud es un ingrediente clave utilizado en muchos métodos
inferenciales.
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1. INTRODUCTION

Academic literature has consistently illustrated that statistical methods based on the likelihood function can
lead to misleading, strange, unstable, preposterous or ridiculous estimates, (Harter & Moore, 1966; Breusch
et al., 1997; Berger et al., 1999; Martins & Stedinger, 2000; Pewsey, 2000; Martins & Stedinger, 2001; El
Adlouni et al., 2007; Tumlinson, 2015). The shape of the likelihood function is often cited as an underlying
cause of these strange or unintuitive results. The criticisms of maximum likelihood estimates, associated
with strange likelihood functions that grow rapidly to infinite and caused by the use of density functions that
have singularities, are invalid. This issue is well known; see Montoya et al. (2009), Liu et al. (2015), and the
references cited therein. However, there are also criticisms of the maximum likelihood estimation that occur
quite often and that arise when the shape of the likelihood function becomes flat. In fact, flat likelihoods
are used to promote integrated likelihoods (Berger et al., 1999; Ghosh et al., 2006), Bayesian posteriors
(Tsionas, 2001), penalized methods (Li & Sudjianto, 2005; Cole et al., 2013; Lima & Cribari-Neto, 2019)

and also new optimization methods (Frery et al., 2004).

Some authors have found that flat likelihoods can be related with an overparameterization of the model
(Catchpole & Morgan, 1997), inappropriate reparametrizations (Farcomeni, & Tardella, 2012), embedded
models (Cheng & Iles, 1990), limited amount and quality of experimental data (Raue et al., 2009; Kreutz et
al., 2013), and even a poor model adjustment to the data, when the sample size is large (Sundberg, 2010).
Although these studies are based on relevant statistical models (exponential family of distributions, three-
parameters distributions, capture-recapture models and dynamical models), and all helped to clarify what is

behind the problem of these flat likelihoods, additional work is needed to enhance our understanding.

This article is focused on the linear regression model. We consider the profile likelihood function to analyze
the ratio of two regression coefficients, our parameter of interest, which naturally appears in many statistical
applications that usually arise in biopharmaceutical and economic research, among others. This parameter
can mean: a measure of the relative potency of a test drug versus a reference drug (Fay et al., 2009); the
location of a turning point in a quadratic specification where the marginal impact of a regressor changes sign
(Rosenblad, 2020); the interpretation of the marginal effect of one regressor when interacted with another

(Hirschberg & Lye, 2010), among many others meanings.

Profile likelihood function for the ratio of two regression coefficients was given by Ghosh er al. (2003)
and reviewed again in Ghosh et al. (2006), where they showed that inferences about this parameter, based
on profile likelihood-confidence intervals, may result the entire real line. This fact occurs because we are
dealing with an essentially flat likelihood function that has a horizontal asymptote, located at some distance

above the global minimum.

In this paper, we analyze conditions under which a confidence interval for the interest parameter, based on
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the profile likelihood function, has an infinite length and even becomes the entire real line. These conditions
are related to the nested models problem. In the cases discussed here, infinite length confidence intervals
arise when a hypothesis test, under an F statistic, shows that full and reduced regression models fit the data
equally well. When this situation is considered, the shape of the likelihood function is very informative and

explains this model criticism problem.

The paper is structured as follows. Section 2 includes some results used to perform hypothesis testing about
the coefficients of the classical linear regression model. In addition, some connections between these tests
and a pivotal quantity (or pivot) for the ratio of two regression coefficients, our parameter of interest, are
presented. Section 3 shows how the shape of the profile likelihood function of the parameter of interest
is determined by the pivotal quantity. Additionally, connections between the shape of the likelihood and
hypotheses tests about the coefficients of the linear regression model are shown. In Section 4 we include
three illustrative simulated cases to exemplify theoretical results shown in previous sections. Finally, some

concluding remarks are presented in Section 5.

2. F-TESTS AND NESTED REGRESSION MODEL

Cox (2006, p. 3) described that a statistical inference process can be basically divided into two stages: choi-
ce of the family of models and model criticism. The family that is chosen in the first stage is often fully
specified, except for a limited number of unknown parameters. In our case, we address flat likelihoods and
estimation issues, within the multiple linear regression framework. For simplicity, and without loss of ge-
nerality, we have selected a linear regression model with two predictor variables. In the second stage, we
must ask ourselves whether the selected model is consistent with the data, if some changes on it may be
needed, or even if the whole model should be modified. A particular problem related to this stage arises
when comparing two nested models. Two models are called nested if one contains all the predictors of the
other one and also some additional predictors. In linear regression, this is known as reduced models (Searle
& Gruber, 1971).

Consider the regression model
yi = Brxi1 + Poxia + e, (1)

fori=1,...,n, n > 2, where ¢;’s are independent random errors, normally distributed with mean 0 and
common variance 6. Here, regression coefficients, B; and ., are considered real unknown parameters.

Model presented in (1) can be written in matrix form
y=XB+e, (2)
where y' = (y1,...,90), XT = (x1,...,%0), xi = (xir,x2) i =1,...,n, BT = (B1,B2), e’ = (e1,...,en), and

rank of X equals 2.
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The nested modelling problem associated with the aim of this article occurs when y; = e; or y; = B1x;1 +e¢; fits
the data evenly well. The typical statistical hypotheses, related to these nested problems are Hy; : B; =2 =0
and Hp, : B2 = 0, respectively. For the nested model y; = ¢;, called the white noise problem, we test the
hypothesis Hy; : 1 = B2 = 0, using the standard test statistic
nf’CB

' 2MSE’
where C = (¢;;) = n~'XTX is a positive matrix, i,j = 1,2, BT = (B1,B2) = (nC)~'XTy, and MSE =
(y—XP)T(y— XPB)/(n—2). It is well known that F; has an F distribution with 2 and n — 2 degrees of
freedom. For 0 < o < 1, the hypothesis Hy; : B; = P2 = 0 is rejected at a significance level when Fj is

3)

greater than the (1 — a) quantile of the F distribution with 2 and n — 2 degrees freedom, quantile denoted

here as F> ;2 1_q.

On the other hand, for the nested model y; = Bx;; + e;, we can test the null hypothesis Hy, : 2 = 0 using
the typical test statistic A
7, _ MCIB3/en @)
MSE
This statistic has an F distribution with 1 and n — 2 degrees of freedom. Thus, when F; is greater than
Fin—21-q the (I — o) quantile of the F distribution with 1 and n — 2 degrees freedom, the hypothesis
Hy : B2 = 0 is rejected at o significance level.

Let us now consider the problem of making inferences on 6; = 3; /B, the ratio of the regression coefficients
By and B,; when B; = B, =0 or B, = 0, it can cause indeterminacy and lead to some paradoxes. For such
reason, inferences about 7 = (B, B,) play an important role in the determination of plausible values of 1,
and this must be fully understood. Particularly, those inferences related to hypotheses Hy; and Hj.

Ghosh et al. (2006) showed that

_ n|C|(B281 — B1)/0(81)

F1(61) VSE

®)

has an F distribution with 1 and n — 2 degrees of freedom, where Q(8;) = 0116% + 2¢12091 + ¢22, being
F1(0,) a pivotal quantity (Sprott, 2008, p. 63) related to the hypotheses tests Hy; and Hp,. They also found
the following relationship between F;(6) and the statistic Fi:

S(lalpFl(el) :2F1. (6)
1

Now, considering (3) and (6), the hypothesis Hy; : 1 = B2 = 0 is rejected at o significance level if

supF(01) >2F 2 1—q. @)
0

On the other hand, there is also a relationship between F;(0;) and F; that is as follows:

lim F(6)) = F, )

|81 |—eo
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since lim|el|ﬁm([§>261 — Bl)Z/Q(Gl) = B%/CH. Hence, observing (4) and (8), the hypothesis Hy, : B, = 0 is
rejected at o significance level if
lim Fi(01) > Fi,21-q- )

1610
The profile likelihood function of 0, is presented in the next section, where it is used to get a closed
mathematical expression for the likelihood ratio test statistic, associated to the pivotal quantity F;(0;). In
addition, we show some connections between relative profile likelihood function and confidence intervals
for 0;. But, even more important than that is to show how profile likelihood function shape is associated with
the nature of the nested models problem. Thus, the characteristics of this problem are naturally inherited by

0; = B1 /P and their confidence intervals.

3. INFERENCE ABOUT PARAMETER 6,

The likelihood approach is one of the most popular techniques for deriving statistics, as explained in Casella
& Berger (2002, p. 315), and this is performed via the likelihood function. The resulting statistics play an
important role in statistical inference since, besides the fact that they can be used to obtain point estimates,
it is possible to construct confidence intervals or perform hypothesis tests based on them. In our case, the
likelihood function for model (2) is given by

L(B1.Be.0) = " exp | 305 (0 XBT (- XP),
and since (y—XB)7 (y— XB) = (y— Xp+XB—XB)" (y—XB+XB—XP) and (XB—XPB)” (y— XB) =0, the
likelihood function can be also written as

L(B1.B2.0) " exp {—% SSE+(B—B)X"X(B-P)] } (10)

A

where SSE = (y—XB)7 (y— XP).

To make inferences regarding a parameter of interest, in the presence of nuisance parameters, the likelihood
approach relies on the profile likelihood function (Sprott, 2008, p. 66). This is obtained by fixing values
for the parameter of interest and maximizing with respect to nuisance parameters. Here, 8; = 3/, is the
parameter of interest and 3, and G are considered nuisance parameters. Hence, in order to obtain the profile
likelihood function for 8y, the likelihood function (10) is reparametrized in terms of (01, 3,,0).

1

L(81,B2,0) =< 6 "exp {—262

|SSE +n(B20— )" C(B20—PB)| } (1n

where 07 = (81, 1). Then, maximizing with respect to 6 and B, the resulting profile likelihood function of
91 is

}—n/27 (12)

Lp(81) o< [SSE +n[C|(B:61 — B1)*/0(81)
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where Q(el) = ¢Tc¢ = Clle% +2¢1201 4¢3 > 0.

By the likelihood invariance property, the MLE of 0; is él = Bl / Bz. Now, the relative profile likelihood
function of 0 is a standardized version that takes a value of one at the maximum of the profile likelihood

function of 6 given in (12),

Ry = L@ _ 1y niCl(Ba6: ~ Bu2/0en]

Lp(8)) (n—2)MSE

13)

A level c profile likelihood region for 6, is given by
{91 ZR(el) Z C},

where 0 < ¢ < 1. Since —21In[R(8,)] follows an asymptotically %2 distribution (Sprott, 2008; Kalbfleisch,
1985), approximate likelihood-confidence intervals can be easily obtained. R () is a transformation of the
pivotal quantity Fj (6,) defined in (5),

F (61)

-n/2

then, a 100(1 — o) % likelihood-confidence interval for 0; is

LCI(y) = {91 :R(Gl) > CLn—Z,l—oc}a (15)

with /2
F _ _ —n

n—2
where F} ,_2 1o is the (1 —a) quantile of the F distribution with 1 and n—2 degrees freedom, and 0 < o < 1.
Equation (15) implies that, in a 0; versus R(0) plot, the likelihood-confidence interval will consist of all 8;

values where relative profile likelihood function exceeds the horizontal cutoff ¢y ,—2 1—q.

On the other hand, since F(0) properties are inherited by R(6,), then, in order not only to understand the
shape of the profile likelihood function of 8, but also to interpret it and to carefully state the results from
statistical inferences for 6; = B; /B and their corresponding hypotheses tests for (B, ), it is necessary to

make a link between the characteristics of the pivotal quantity F;(8;) and R(6).

In particular, since the quantity Fj(6,) attains its maximum and minimum and has a horizontal asymptote,
then R(0;) will also reach its maximum and minimum and will have a horizontal asymptote. Relative profile
likelihood function R(6) crosses the horizontal asymptote, as illustrated in Figure 1. Note that, by (8) and
(14), F1(0;) inherits the asymptote to R(8;) function, when |0, | becomes larger, so that R(6,) approaches
to the asymptote (1 + F;/(n—2))~"/2. Moreover, by varying | , 2.1 ¢ level, (0 < o < 1), the length of the
likelihood-confidence intervals for 8; can be finite or infinite. Something far more interesting is the fact that
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B

Figure 1: An illustration of the relative profile likelihood function of 8. Source: Elaborated by the authors.

likelihood inferences for 0; are related to the classical hypotheses tests on the regression coefficients ; and
B2, as is explained below.
A case of likelihood-confidence intervals of infinite length for 8; occurs when

eiIIgRaR(el) > Cln-2,1-a- (16)
This fact leads to the typical criticism of absurd likelihood-confidence intervals. That is, there is always a
confidence level o0 < 1 for which the associated likelihood-confidence interval is the entire real line. This
issue should not be taken lightly, because it conceals information about the plausibility of the hypothesis
Hp; : B1 = B2 = 0. Since (16) can equivalently be written as

2R <Fip21-a

and Fi p—21-o < 2F> ,—2,1—q, see Casella & Berger (2002, p. 258) and Casella et al. (2001, p. 5-7), then
the hypothesis Hp; : B1 = B2 = 0 is not rejected at o significance level. Therefore, intervals of this type are
related to a non-rejection of Hp;. On the other hand, when Hy; is rejected, it is usual to analyze if any of
the regression coefficients is zero. The connection between Hy; : B, = 0 and the infinite length likelihood-

confidence intervals is shown below.

Another possibility of likelihood-confidence intervals of infinite length for 6, occurs when

lim R(61) > c¢iu—21-a- 17

[61]—re0

In this case, likelihood-confidence interval may result the entire real line or the union of two infinite intervals,

and that occurs when ¢, _¢ is less than the minimum value of R(8;) or when it lies between the
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horizontal asymptote and the minimum value of R(0;), respectively. Note that an infinite length interval
is also obtained when the value of ¢; ,—2,1-¢ coincides exactly with the asymptote. However, in any case,

the hypothesis Hy; : B> = 0 is not rejected at a significance level, because (17) is equivalent to
B <Fl,2i-a.

Overall, likelihood-confidence intervals of infinite length suggest moving back to the model criticism stage
and testing for model adequacy, in terms of the significance of the regression model coefficients.

4. ILLUSTRATIVE EXAMPLES

This section exemplifies the relationship between parameter 0; inferences and hypotheses tests regarding
nested models involving B and [B,. In that sense, the three following cases are considered:

= Example 1: Hy; : B; = B> = 0 is not rejected,
= Example 2: Hy; : B> = 0 is not rejected but Hy; : B; = B> = 0 is rejected,
= Example 3: Hy; : B = B2 = 0 and Hy; : B2 = 0 are both rejected.

In all these examples sample size is set at n = 25 and significance level is fixed at o0 = 0.05, s0 ¢1 4—2,1—«
shown in (15) takes a value of 0.11, which will be used in all these examples. In the same way, 6 = 5 remains
fixed, as well as the covariable (x1,x;) values obtained from Rawlings ez al. (1998, p. 177). In view of all

the above, the procedure results as follows:
= In all the examples, B; and B, values are provided.

= Given B; and [, values, y; is then simulated from a normal distribution with mean Bx;; + B2x;» and a

standard deviation ©.

= Once F; statistic is computed, then Hy; : B; = B> = 0 is tested. The critical value corresponding to this

hypothesis testis F2 ,—2 1—q = 3.42.

= In case of Hp; : B = P2 = 0 rejection, then Hy, : B = 0 is tested by computing F> statistic and
comparing it with Fy , > 1o = 4.27 critical value.

= Finally, a plot of the relative profile likelihood function for 6; is constructed and a 100(1 — o) %
likelihood-confidence interval for this parameter is computed.
4.1. Example 1: Hy; : B; = B2 = 0 is not rejected

In this example B; = 0.2 and B, = 0.02 are considered, simulating then y; values from a normal distribution
with mean 0.2x;; +0.02x;, and standard deviation 6. Once the sample for this regression model is generated,

the hypothesis Hy; : B = B2 = 0 is tested at o significance level. In this case, the test statistic value
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Figure 2: Relative profile likelihood function of 6, for Example 1: Hy; : B; = B2 = 0 is not rejected at o significance level. Source:
Elaborated by the authors.

results F; = 1.02. Now, since F| < F>,_21—q, there is no statistical evidence to reject the hypothesis
Ho; : B1 = B2 = 0; so that these covariables could be excluded from the model. However, if this information is
not considered and the inference process regarding 6; continues, a relative profile likelihood function of 01,
like the one shown in Figure 2, is obtained. This type of graph clearly shows a function that is always above
the horizontal cutoff ¢ ,_» ¢ that is, the whole 100(1 — &) % likelihood-confidence interval for 8; results
in the real line. Moreover, as explained in Equation (16), when the infimum of the relative profile likelihood
function for 0; is greater than ¢ ,_2 1, then, there is no statistical evidence to reject Ho; : 1 = P2 =0, at

the proposed o significance level.

4.2. Example 2: Hy, : B; = 0 is not rejected but Hy; : B; = B> = 0 is rejected

In this example B; = 0.5 and B, = 0.02, so y; values are simulated from a normal distribution with mean
0.5x;1 +0.02x;» and standard deviation 6. Under this scenario F; = 20.6, so it follows that F; > F> ,,_7 1_q,
and at o significance level there is statistical evidence to reject the hypothesis Hy; : 1 = B> = 0. According
to the procedure previously stated, hypothesis Hy, : B2 = 0 is now tested. In this case F> = 1.63, so
F, < Fj p—2,1-q; that is, there is no statistical evidence to reject the hypothesis Hy; : B2 = 0, at o significance
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1.0

Figure 3: Relative profile likelihood function of 6; for Example 2: At o significance level Hy; : B, = 0 is not rejected but
Hp : B1 = B2 = 0 is rejected. Source: Elaborated by the authors.

level, so x, variable could be excluded from the regression model. However, if this variable remains in
the model and the inference process about parameter 8; continues, a 100(1 — o) % likelihood-confidence
interval of infinite length for 0; is also obtained. That occurs because the asymptote of the relative profile
likelihood function for 0; is above the cutoff ¢ ,—> 1_q, as shown in Figure 3. Note that, in this case,
the infimum of the relative profile likelihood is not above this cutoff, like in previous example where
Hp; : B1 = B2 = 0 is not rejected, but the asymptote of the relative profile likelihood function for 6,
as explained in Equation 17, is above the cutoff ¢q, 2 1-¢, S0 there is no statistical evidence to reject

Hy, : B2 =0, at o significance level.

4.3. Example 3: Hy; : B; = B2 =0 and Hy; : B> = 0 are both rejected

To exemplify this scenario 3; = 0.5 and B, = 0.6 are considered, so y; values are generated based on a normal
distribution with mean 0.5x;; +0.6x;; and standard deviation 6. Now, since Fj =27.44,then F1 > F> ,_2 1—«;
therefore, the hypothesis Hy; : 1 = B> = 0 is rejected at o significance level. Similarly, as F> = 4.64, then
F, > Fy y—2.1-¢ and Hy : B, = 0 is also rejected at o significance level. When continuing with the inference
process regarding 01, under this situation, a finite 100(1 — a) % likelihood-confidence interval for 0 is
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Figure 4: Relative profile likelihood function of 8; for Example 3: Hy; : B = B2 =0y Hpy : P2 = 0 are both rejected at o
significance level. Source: Elaborated by the authors.

obtained. In this case the asymptote of the relative profile likelihood function for 0; is below the cutoff
C1,n—2,1—a- as shown in Figure 4.

As can be observed in the examples included here, when an infinite 100(1 — o) % likelihood-confidence
interval for 0 is obtained, it implies that there will be no statistical evidence to reject any of the hypotheses
Hyp : B1 =PB2=0o0r Hy, : B> =0, at o significance level. Note that, as mentioned in previous section, when
hypothesis Hy; : B2 = 0 is not rejected, at o significance level, then a 100(1 — o) % likelihood-confidence
interval of infinite length, for parameter 8; = ;/f,, is obtained.

S. CONCLUSIONS

The purpose of this article is to emphasize the importance of deeply understanding and analyzing the shape
of the likelihood function and their corresponding inferences. In the cases discussed here, the infinite length
of likelihood-confidence intervals are due to the fact of considering full models when reduced models are not
rejected by the data. Occurrence of flat likelihood shapes, like the ones presented here, are very informative

regarding model criticisms and should not be the reason for seeking or promoting alternative estimation
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methods such as integrated likelihoods or posterior Bayesian distributions.
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