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RESUMEN: La distribución multinomial es fundamental para la descripción de fenómenos en los que pue-

den ocurrir k > 2 eventos excluyentes, cada uno con probabilidad π = (π1, π2, . . . , πk). Algunos ejemplos

de esta distribución incluyen la calidad de un producto o encuestas de selección múltiple. Un problema de

gran interés en inferencia estad́ıstica es la construcción de intervalos de confianza para π. En este trabajo

se comparan, a través de un estudio de simulación, 13 metodoloǵıas para la construcción de intervalos de

confianza para los parámetros de dicha distribución. Utilizando el nivel de confianza nominal, la longitud

del intervalo y una combinación de éstos como criterios de comparación, se encuentra que los intervalos

de confianza basados en el Teorema del Ĺımite Central no presentan el mejor desempeño. Finalmente se

recomiendan los métodos basados en la distribución F (Leemis, 1996), seguido del método de verosimilitud

relativa (Kalbfleish, 1985) y Quesenberry & Hurst (1964).
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fianza.

ABSTRACT: The multinomial distribution is fundamental when describing phenomena in which k > 2 mu-

tually exclusive events occur, each with probability π = (π1, π2, . . . , πk). Some examples of this distribution

include the quality of a product or multiple choice questions. A problem of interest in statistical inference

is the construction of confidence intervals for π. In this paper we present the results of a simulation study

comparing 13 methods to construct confidence intervals for the parameter of the multinomial distribution.
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jccorrea@unal.edu.co
dThe Arcos-Burgos Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian

National University, Canberra, ACT 2601, Australia.
eGrupo de Neurociencias de Antioquia, Universidad de Antioquia, Medelĺın, Colombia. jor-
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By using the confidence nominal level, the length of the interval and a combination of both as the evaluation

criteria, it is found that confidence intervals based on the central limit theorem performed poorly. Methods

based on the F distribution (Leemis, 1996) followed by the likelihood ratio (Kalbfleish, 1985) and the method

presented by Quesenberry & Hurst (1964) are now recommended.

KEYWORDS: Confidence intervals, estimation, multinomial distribution, statistical computing.

1. INTRODUCCIÓN

La construcción de intervalos de confianza (IC) para los parámetros de la distribución multinomial

es un problema que se presenta frecuentemente en el trabajo estad́ıstico aplicado, por ejemplo

cuando se responden preguntas de selección múltiple. Por lo general, los IC que se construyen en

la práctica están basados en el Teorema del Ĺımite Central, pero en la literatura existen otras

alternativas.

Quesenberry & Hurst (1964) presentan un método para obtener un conjunto de intervalos

simultáneos para las probabilidades de una distribución multinomial basado en la distribución

χ2. En este método cada una de las celdas se compara con las restantes utilizando una distribución

binomial, y posteriormente se construye el IC para cada celda de manera individual. Goodman

(1965) modificó el procedimiento de Quesenberry & Hurst (1964) y presentó dos métodos para

construir IC simultáneos que son más pequeños que los encontrados con el método de (Quesenberry

& Hurst, 1964). Ambos métodos están basados en la aproximación a la distribución normal para

una proporción binomial y utilizan la desigualdad de Bonferroni para establecer un ĺımite superior

para la probabilidad simultánea de que los intervalos sean correctos.

De igual manera, Sison & Glaz (1995) construyen IC simultáneos para π, el primero de ellos basado

en el algoritmo de Levin (1981) que consiste en la aproximación de la distribución acumulada de

la distribución multinomial, y el segundo utilizando la estructura de dependencia negativa en la

distribución multinomial y las desigualdades relacionadas con las probabilidades introducidas por

Glaz & Johnson (1984). En SAS (SAS Institute Inc., Cary, NC, USA), May & Johnson (2000)

proporcionan macros para calcular estos intervalos, y argumentan que estos intervalos funcionan

mejor que los otros métodos cuando k → ∞, el número de observaciones no lo es tanto y no

existen celdas que polaricen las probabilidades. Correa & Sierra (2001) estudian varios métodos para

construir IC para el parámetro de la distribución binomial. Los autores encuentran que el mejor

método es el de la razón de verosimilitud seguido por el método exacto de la distribución F . Correa

& Sierra (2003) revisan diferentes procedimientos de construcción de IC para la comparación de dos

proporciones a través de un estudio de simulación, y encuentran que, aunque el método de Wald

es el más deficiente, es el que con mayor frecuencia utilizan los investigadores por su simplicidad.

Cepeda et al. (2008) evalúan y comparan el comportamiento de diferentes metodoloǵıas para la

obtención de IC e intervalos de credibilidad para una proporción, verifican conclusiones conocidas

como el mal comportamiento del intervalo de Wald y recomiendan el intervalo score y Bayesiano
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con distribución a priori uniforme.

En este trabajo, basado en González-Gómez (2010), se realiza una revisión exhaustiva y un estudio

comparativo, v́ıa simulación, de las metodoloǵıas propuestas en la literatura para la construcción

de IC para el parámetro de la distribución multinomial, π. Para cada uno de los IC se analiza el

nivel de confianza, la longitud y una función de éstos, denominada ı́ndice, para los distintos valores

de π y el tamaño de la muestra N . En la sección 2 se presentan los aspectos teóricos de los IC a

comparar; en la sección 3 se describe el estudio de simulación y la metodoloǵıa utilizada para la

comparación de los IC v́ıa simulación; en la sección 4 se presentan los resultados, y finalmente se

discuten los principales hallazgos y direcciones futuras de investigación.

2. INTERVALOS DE CONFIANZA PARA π

En la mayoŕıa de los textos básicos de estad́ıstica, el IC para πi está dado por (Roussas, 1973;

Walpole, 1992; Casella & Berger, 2002; Meyer, 1986; Canavos, 1988):

⎛
⎝
π̂i − zα/(2k)

√
π̂i(1 − π̂i)

N
, π̂i + zα/(2k)

√
π̂i(1 − π̂i)

N

⎞
⎠

(1)

donde k es el número de categoŕıas de la distribución multinomial, π̂i es el estimador de máxima

verosimilitud de πi (i = 1,2, . . . , k) y zγ es el percentil 100 × (1 − γ) de la distribución normal

estándar. Con el propósito de introducir la corrección por continuidad propuesta por Snedecor &

Cochran (1980), el intervalo (1) puede modificarse como

⎛
⎝
π̂i − zα/(2k)

√
π̂i(1 − π̂i)

N
− 1

2N
, π̂i + zα/(2k)

√
π̂i(1 − π̂i)

N
+ 1

2N

⎞
⎠
. (2)

Una alternativa adicional es construir el IC como:

π̂iCα +
1

2N
Cαz

2
α/2 ± zα

√
Cα
N

[π̂i(1 − π̂i)Cα +
1

4N
Cαz2

α/2
] (3)

con

Cα =
⎛
⎝

N

N + z2
α/2

⎞
⎠
.

Quesenberry & Hurst (1964) consideran cada celda versus las restantes como una distribución

binomial y estiman los IC basados en la distribución binomial para la proporción de las celdas

individuales. El método está basado en la aproximación de la distribución χ2 y el intervalo para πi

está dado por

χ2
k−1,1−α + 2xi ±

√
χ2
k−1,1−α (χ2

k−1,1−α + 4xi
(N−xi)
N )

2 (N + χ2
k−1,1−α)

(4)
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Goodman (1965) modificó el procedimiento de Quesenberry & Hurst (1964) y estimó el IC para πi

como

χ2
(1−α/k),1 + 2xi ∓

√
χ2
(1−α/k),1

(χ2
(1−α/k),1

+ 4xi
(N−xi)
N )

2(N + χ2
(1−α/k),1

)
(5)

Bailey (1980) presenta tres conjuntos de intervalos de confianza para las probabilidades de una

Distribución Multinomial basados en la desigualdad de Bonferroni. Mientras el primero de estos

intervalos, originalmente propuesto por Goodman (1965), está basado en la aproximación de la

normal para una proporción binomial, los otros dos requieren transformaciones, una transformación

angular y una ráız cuadrada, respectivamente. Los dos últimos intervalos propuestos por Bailey

(1980) para πi están dados por

⎛
⎝

sin

⎡⎢⎢⎢⎢⎣
sin−1(

√
p′i) ∓

χ2
1−α/k,1

(4N + 2)1/2

⎤⎥⎥⎥⎥⎦

⎞
⎠

2

(6)

donde

p′i =
xi + 3/8
N + 3/4

⋅

El intervalo restante se construye como

(
√
p′′i ∓

√
C[C + 1 − p′′i ])

2

(C + 1)2
(7)

donde

p′′i =
xi + 3/8
N + 1/8

, C =
χ2

1−α/k,1

4N
⋅

Los intervalos (6) y (7) deben modificarse cuando xi → 0 o xi → N . Aśı, (6) debe calcularse como

π−i = 0 si xi ≤ (N + 3/4){sin[χ2
1−α/k,1/(4N + 2)1/2]}2 + 1/8 (8)

π+i = 1 si xi ≥ (N + 3/4){sin[π/2−χ2
1−α/k,1/(4N + 2)1/2]}2 − 7/8

Similarmente, el intervalo definido por (7) estaŕıa dado por

π−i = 0 si xi ≤ (N + 1/8)C − 3/8 (9)

π+i = 1 si xi ≥ N − 1/4

Kalbfleish (1985) presenta la metodoloǵıa para construir intervalos de verosimilitud. Si L(θ) es la

función de verosimilitud, se define la función de verosimilitud relativa como

R(θ) = L(θ)
L(θ̂)

⋅ (10)

El conjunto de valores de θ para los cuales R(θ) ≥ p es llamado intervalo de 100 %p de verosimilitud

para θ. Los ĺımites del intervalo están dados por las ráıces de R(θ), generalmente halladas utilizando
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métodos numéricos.

Fitzpatrick & Scott (1987) proponen un intervalo de la forma

(π̂i −
zα/2

2
√
N
, π̂i +

zα/2

2
√
N

) (11)

Sison & Glaz (1995) sugieren encontrar un entero c tal que cπ ≤ 1 − α ≤ (c + 1)π. En el caso de la

distribución multinomial los IC simultáneos están dados por

(π̂i −
c

N
, π̂i +

c

N
+ 2δ

N
) , δ = (1 − α) − π(c)

π(c + 1) − π(c)
⋅ (12)

Para construir los IC basados en el método de la distribución F con un nivel de confianza

del (1 − α)100 % para π se deben determinar los ĺımites inferior LI y superior LS , tales que

P (Y ≥ y∣π = LI) = α/2 y P (Y ≤ y∣π = LS) = α/2. En términos de la distribución F , el intervalo

“exacto” es (Leemis & Trivedi, 1996):

⎛
⎜
⎝

1

1 + n−y+1
yF2y,2(n−y+1),1−α/2

,
1

1 + n−y
(y+1)F2(y+1),2(n−y),α/2

⎞
⎟
⎠

(13)

El método bootstrap proporciona una manera directa y sencilla para hallar intervalos simultáneos

para los parámetros de la distribución multinomial. Para ello, se procede como sigue:

1. A partir de la muestra de tamaño N de una distribución multinomial, estime los parámetros

por máxima verosimilitud π̂i = ni/N , i = 1,2, . . . , k.

2. Genere B muestras de tamaño N de una distribución multinomial con parámetros π̂ =
(π̂1, π̂2, . . . , π̂k). Estime, para la j-ésima muestra, π̂j = (π̂j1, π̂

j
2, . . . , π̂

j
k), j = 1,2, . . . ,M.

3. Para cada {π̂ji }
B

j=1
, calcule los percentiles α/2 y 1−α/2 y construya el intervalo bootstrap como

(π̂α/2i , π̂
1−α/2
i ), i = 1,2, . . . , k.

El intervalo a < θ < b se llamará intervalo bayesiano (1 − α)100 % para θ si

∫
a

−∞
π(θ∣x)dθ = ∫

∞

b
π(θ∣x)dθ = α

2
⋅ (14)

En la aproximación Bayesiana, la estimación por intervalos se define por una evaluación simple de

las distribuciones a posteriori de los parámetros. Para calcular los intervalos Bayesianos se utiliza

la distribución Dirichlet como distribución a priori conjugada de la distribución multinomial. Es

decir, su función de densidad de probabilidad devuelve la credibilidad de que las probabilidades de

k celdas son xi, dado que cada celda ha sido observada θi − 1 veces, donde θ = (θ1, θ2, . . . , θk) no

negativo y real es el parámetro de la distribución Dirichlet.
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2.1. Entroṕıa como medida de polarización en la multinomial

En estad́ıstica aplicada, la entroṕıa H ha sido utilizada como una medida de incertidumbre

(Burrows, 1989; Correa & Sierra, 2001). En el caso de la distribución multinomial, la entroṕıa

se define como

H = −
k

∑
i=1

πi log(πi), (15)

donde 0 <H < log(k). El valor mı́nimo de H se alcanza cuando πi = 1/N y el máximo cuando toda

la masa de probabilidad está concentrada en una de las categoŕıas. A partir de una muestra de

tamaño N de una distribución multinomial con k categoŕıas, el estimador de la entroṕıa será

Ĥ = −
k

∑
i=1

ni
N

log (ni
N

) .

3. ESTUDIO DE SIMULACIÓN Y RESULTADOS

3.1. Comparación de los IC

Para la comparación de los IC v́ıa simulación, se implementó un algoritmo en R (R Core Team, 2015)

que opera de la siguiente manera:

1. Genere una muestra de tamaño N de una distribución multinomial con parámetro π =
(π1, π2, . . . , πk).

2. Para un nivel de confianza 1 −α, calcule los IC presentados en la sección 2 para πi, y calcule

la longitud del intervalo como la diferencia entre los ĺımites superior e inferior (i = 1,2, . . . , k).

3. Repita 1 y 2, B veces. Determine la proporción de veces que cada IC calculado en 2 cubre

el parámetro π. Denote esta cantidad como el nivel de confianza real, o NR
C . Adicionalmente,

calcule la longitud promedio de cada IC en las B simulaciones. Denote esta cantidad como

L. Observe que 0 < NR
C < 1 y 0 < L < 1.

4. Para el IC calcule el ı́ndice (Correa & Sierra, 2001)

I = (1 −L)
NR
C

1 − α
(16)

donde L es la longitud promedio de los intervalos, NR
C es el nivel de confianza real y 1 −α es

el nivel de confianza nominal. En el caso de la distribución multinomial, este indicador puede

interpretarse como la eficiencia del método para producir IC con un nivel de significancia

cercanos al valor nominal ponderada por la dispersión alrededor de la estimación puntual

de π̂ = (π̂1, π̂2, . . . , π̂k). Para i fijo, esta última cantidad, denotada por d̂i (0 < d̂i < 1), es

una función de la longitud del intervalo para la categoŕıa i, Li, y del tamaño de muestra ni,

i = 1,2, . . . , k.
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5. Reporte N , NR
C , L e I para los IC evaluados (ver §2).

En total se generaron B = 1000 muestras de tamaño N = {30,50,100,200,500} de distribuciones

multinomiales de dimensión k = {3,4,5,10}. Los valores de π para cada valor de k se presentan en

la Tabla 1. En todos los escenarios de simulación, el nivel de confianza nominal fue 1 − α = 0,95.

Cuando se encontraban celdas con cero observaciones, se reemplazó ni por 0.5.

Tabla 1: Valores de π como función de k.

k π

3 (1/3, 1/3, 1/3), (0.3, 0.3, 0.4), (0.3, 0.3, 0.4)

(0.2, 0.3, 0.5), (0.1, 0.3, 0.6), (0.05, 0.3, 0.65)

(0.05, 0.2, 0.75), (0.05, 0.1, 0.85), (0.05, 0.05, 0.9)

(0.01, 0.01, 0.98)

4 Todos iguales a 1/4, (0.4, 0.3, 0.2, 0.1)

(0.7, 0.2, 0.05, 0.05), (0.7, 0.2, 0.095, 0.005)

5 Todos iguales a 1/5, (0.2, 0.2, 0.2 0.15, 0.25)

(0.2, 0.2, 0.2, 0.1, 0.3), (0.05, 0.05, 0.05, 0.05, 0.8)

(0.2, 0.2, 0.2, 0.05, 0.35)

10 Todos iguales a 1/10
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Tabla 5: Índice Promedio

Método Índice Promedio Orden Desempeño
F 1.0247 1
RV 1.0240 2 Excelente
QH 1.0191 3
Bailey3 1.0071 4
Bailey2 1.0048 5 Bueno
Goodm 1.0006 6
Fitz 0.9835 7
SG 0.9730 8
TCL 0.9546 9
TCL.cor 0.9223 10 Regular
TCL.II 0.8833 11
Bayes 0.8774 12
Boot 0.8012 13 Deficiente

(a) (b) 

Figura 1: (a) Agrupamiento de los métodos para la construcción de IC para el paraḿetro de la distribución

multinomial utilizando el indicador I; (b) clasificación de los métodos de acuerdo con su desempeño. Bayes:

método Bayesiano; Bailey2: IC en (6); Bailey3: IC en (7); F: método basado en la distribución F; Good:

método de Goodman (1965), Fitz: Fitzpatrick and Scott (1987); QH: Quesenberry and Hurst (1964); TCL:

IC en (1); TCL.cor: IC en (2); TCL.II: IC en (3); RV: razón de verosimilitud; SG: Sison and Glaz (1995),

TCL: teorema central del ĺımite.
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Tabla 2: Nivel de confianza real y longitud promedio del intervalo para k = 3,4,5 y 10.

π = (1/3,1/3,1/3)

Entroṕıa Relativa=1

Método N=30 N=50 N=100 N=200 N=500

level vol level vol level vol level vol level vol

IC.SG 0.922 0.063111 0.955 0.032359 0.945 0.010645 0.932 0.003963 0.953 0.001000

IC.Bayes 0.865 0.029329 0.873 0.015095 0.855 0.005785 0.892 0.002136 0.889 0.000554

IC.QH 0.973 0.055747 0.945 0.028926 0.957 0.011182 0.961 0.004142 0.965 0.001078

IC.Goodman 0.966 0.052642 0.945 0.027229 0.957 0.010496 0.946 0.003880 0.952 0.001009

IC.F 0.991 0.082759 0.986 0.039200 0.968 0.013662 0.969 0.004684 0.967 0.001137

IC.Fitz 0.913 0.045821 0.898 0.021296 0.908 0.007529 0.901 0.002662 0.904 0.000673

IC.Boot 0.800 0.034173 0.861 0.016734 0.849 0.006045 0.881 0.002167 0.877 0.000555

IC.Bailey2 0.939 0.064661 0.937 0.029322 0.943 0.010913 0.951 0.003960 0.952 0.001018

IC.Bailey3 0.928 0.056391 0.946 0.028618 0.966 0.010792 0.949 0.003936 0.949 0.001015

IC.TCL 0.882 0.065545 0.957 0.031305 0.936 0.011280 0.959 0.004028 0.963 0.001025

IC.TCL.cor 0.879 0.065552 0.925 0.031342 0.949 0.011293 0.952 0.004029 0.960 0.001025

IC.TCL.II 0.913 0.031017 0.89 0.015656 0.838 0.005890 0.862 0.002155 0.88 0.000557

IC.RV 0.937 0.061026 0.970 0.030815 0.968 0.011560 0.962 0.004215 0.961 0.001086

π = (0,7,0,2,0,05,0,05)

Entroṕıa Relativa=0.6283898

Método N=30 N=50 N=100 N=200 N=500

level vol level vol level vol level vol level vol

IC.SG 0.899 0.005110 0.905 0.00212682 0.902 0.000642333 0.926 0.000211061 0.946 4.293E-05

IC.Bayes 0.838 0.002232 0.868 0.000795633 0.876 0.000196714 0.843 5.08E-05 0.824 8.150E-06

IC.QH 0.965 0.011528 0.97 0.004047164 0.979 0.000954664 0.975 0.000224854 0.984 3.485E-05

IC.Goodman 0.95 0.007353 0.965 0.002482702 0.957 0.000591113 0.955 0.000140855 0.957 2.201E-05

IC.F 0.991 0.019312 0.983 0.005812346 0.991 0.001146042 0.981 0.000236408 0.988 3.132E-05

IC.Fitz 0.969 0.016171 0.948 0.005885526 0.955 0.001475519 0.955 0.00036892 0.955 5.903E-05

IC.Boot 0.877 0.001529 0.762 0.000620103 0.681 0.000179618 0.763 4.78E-05 0.786 7.933E-06

IC.Bailey2 0.985 0.007270 0.97 0.002408555 0.962 0.000639095 0.962 0.000151709 0.959 2.145E-05

IC.Bailey3 0.973 0.005619 0.972 0.001997933 0.956 0.000500743 0.971 0.000131074 0.965 2.151E-05

IC.TCL 0.944 0.005456 0.814 0.00194816 0.9 0.000504365 0.932 0.000131262 0.943 2.154E-05

IC.TCL.cor 0.928 0.005409 0.795 0.001892756 0.745 0.000512058 0.922 0.000131149 0.924 2.141E-05

IC.TCL.II 0.825 0.002654 0.857 0.000899684 0.858 0.000214405 0.867 5.22E-05 0.831 8.30E-06

IC.RV 0.99 0.008798 0.99 0.003187254 0.986 0.000808589 0.98 0.000208128 0.978 3.388E-05

π = (0,2,0,2,0,2,0,15,0,25)

Entroṕıa Relativa=0.9674888

Método N=30 N=50 N=100 N=200 N=500

level vol level vol level vol level vol level vol

IC.SG 0.959 0.006641 0.918 0.001556 0.917 0.000318 0.935 0.000064 0.952 6.60E-06

IC.Bayes 0.779 0.000964 0.832 0.000342 0.817 0.000074 0.805 0.000015 0.792 1.57E-06

IC.QH 0.983 0.011280 0.988 0.003743 0.990 0.000760 0.985 0.000144 0.993 1.53E-05

IC.Goodman 0.946 0.005064 0.965 0.001622 0.973 0.000320 0.950 0.000060 0.963 6.28E-06

IC.F 0.996 0.018738 0.994 0.004933 0.992 0.000754 0.986 0.000113 0.973 9.52E-06

IC.Fitz 0.914 0.005864 0.921 0.001636 0.922 0.000289 0.919 0.000051 0.920 5.20E-06

IC.Boot 0.662 0.001378 0.698 0.000430 0.694 0.000083 0.756 0.000015 0.763 1.58E-06

IC.Bailey2 0.941 0.009852 0.945 0.002459 0.948 0.000332 0.947 0.000060 0.963 6.30E-06

IC.Bailey3 0.938 0.004716 0.953 0.001570 0.965 0.000315 0.940 0.000059 0.952 6.26E-06

IC.TCL 0.750 0.005934 0.862 0.001800 0.910 0.000340 0.939 0.000062 0.942 6.35E-06

IC.TCL.cor 0.777 0.006019 0.793 0.001811 0.872 0.000341 0.938 0.000062 0.935 6.36E-06

IC.TCL.II 0.849 0.001404 0.796 0.000437 0.738 8.36E-05 0.807 1.55E-05 0.777 1.61E-06

IC.RV 0.994 0.011507 0.988 0.003809 0.987 0.000762 0.991 0.000145 0.985 1.53E-05

π = (1/10,1/10,1/10,1/10,1/10,1/10,1/10,1/10,1/10,1/10)

Entroṕıa Relativa=1

Método N=30 N=50 N=100 N=200 N=500

level vol level vol level vol level vol level vol

IC.SG 0.961 1.3369E-06 0.970 1.921E-07 0.943 2.325E-08 0.938 6.122E-10 0.947 6.43E-12

IC.Bayes 0.908 2.2476E-08 0.670 3.706E-09 0.649 2.259E-10 0.614 1.042E-11 0.623 1.36E-13

IC.QH 0.993 3.6798E-04 0.999 3.439E-05 0.998 1.073E-06 0.999 3.085E-08 1.000 2.90E-10

IC.Goodman 0.913 8.4047E-06 0.903 6.487E-07 0.960 1.965E-08 0.922 5.944E-10 0.951 5.97E-12

IC.F 0.999 1.2909E-03 0.997 7.740E-05 0.989 1.129E-06 0.994 1.456E-08 0.990 5.32E-11

IC.Fitz 0.986 3.3310E-05 0.964 2.669E-06 0.981 8.365E-08 0.984 2.614E-09 0.986 2.68E-11

IC.Boot 0.063 4.8477E-08 0.215 7.364E-09 0.454 3.457E-10 0.459 1.296E-11 0.541 1.45E-13

IC.Bailey2 1.000 5.1161E-06 0.997 7.669E-07 0.966 7.533E-08 0.950 6.334E-10 0.949 5.59E-12

IC.Bailey3 0.996 2.7314E-06 0.989 3.025E-07 0.964 1.294E-08 0.949 4.837E-10 0.953 5.47E-12

IC.TCL 0.623 3.3327E-06 0.705 3.544E-07 0.777 1.438E-08 0.919 5.096E-10 0.911 5.62E-12

IC.TCL.cor 0.635 3.2678E-06 0.687 3.502E-07 0.766 1.446E-08 0.839 5.109E-10 0.925 5.61E-12

IC.TCL.II 0.74 1.8017E-07 0.702 1.419E-08 0.537 4.744E-10 0.645 1.521E-11 0.669 1.59E-13

IC.RV 1 1.8480E-04 1 1.672E-05 1 6.37E-07 0.999 2.257E-08 0.999 2.51E-10
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3.2. Resultados

De la Tabla 2 se puede observar que NR
C /(1 − α) en los métodos basados en la distribución F ,

Quesenberry & Hurst, Goodman, Bailey2, Bailey3 y la Razón de Verosimilitud es cercano a uno.

Sin embargo, el mejor de éstos es el que presenta una longitud promedio de intervalo más baja

y un ı́ndice mayor o igual a uno. Es posible también observar que los intervalos encontrados con

el método de Goodman tienen volúmenesf más pequeños que los encontrados con el método de

Quesenberry & Hurst, corroborando la conclusión de Goodman (1965).

Las tablas 3 y 4 muestran los ı́ndices para cada uno de los trece métodos analizados con diferentes

valores de N y π. Se observa que para tamaños de muestra pequeños los intervalos calculados con el

método de verosimilitud relativa tienen ı́ndices pequeños pero a medida que el tamaño de muestra

aumenta el ı́ndice crece hasta alcanzar ı́ndices mayores o iguales a los encontrados con el método de

la F . Independiente del valor de N , el método de Quesenberry & Hurst presenta ı́ndices buenos y

éstos se conservan a medida que N aumenta. Sin embargo, los ı́ndices hallados con los dos métodos

antes mencionados lo superan.

De la Figura 1 se observa que los métodos basados en la distribución F y el método de Razón de

Verosimilitud presentan el mı́nimo nivel de distancia, es decir, la máxima similaridad y cuando se

incrementa la distancia los intervalos encontrados mediante el método de Quesenberry & Hurst se

unen a este grupo. Adicionalmente, los IC construidos con el método bootstrap son los más diferentes

del grupo ya que presentan la máxima distancia con respecto a los otros métodos. Si se combina

la información de las tablas y la Figura 1a, se observa que en este último aparecen los métodos

agrupados de acuerdo con el valor del ı́ndice I resultante en todas las simulaciones. En la Figura

1b los métodos se clasifican de acuerdo con el ı́ndice promedio en todos los escenarios.

4. DISCUSIÓN

En este trabajo se compararon, a través de un estudio de simulación, 13 métodos para la

construcción de IC para los parámetros de la distribución multinomial. A partir de los resultados

obtenidos para el ı́ndice I en la ecuación (16), los IC basados en la Función de Verosimilitud

Relativa, en el método F y en el método de Quesenberry & Hurst tienen un desempeño superior

a los demás puesto que los ı́ndices encontrados para estos métodos son los más altos del conjunto.

Utilizando esta misma métrica, los métodos más deficientes son los basados en bootstrap y estad́ıstica

Bayesiana.

No es recomendable considerar una de las tablas aisladamente para seleccionar el mejor método, ya

que no necesariamente un intervalo que tenga un volumen pequeño tiene un nivel de confianza real

cercano al nivel nominal, como sucede por ejemplo con los intervalos encontrados con los métodos de

Máxima Verosimilitud, el método exacto basado en la distribución F y el método de Quesenberry

fEl volúmen se define como V = ∏
k
i=1(1 − Li), donde Li es la longitud promedio de cada intervalo en las B

simulaciones. Ver §3 para más detalles.
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Tabla 3: Índice para k = 3.

π = (1/3,1/3,1/3)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9093 0.8838 0.9671 0.9633 0.9568 0.9170 0.8133 0.9245 0.9218 0.8676 0.8646 0.9312 0.9261

50 0.9727 0.9051 0.9660 0.9677 0.9972 0.9251 0.8911 0.9574 0.9673 0.9758 0.9432 0.9222 0.9896

100 0.9841 0.8948 0.9961 0.9968 1.0050 0.9486 0.8883 0.9818 1.0059 0.9741 0.9877 0.8769 1.0072

200 0.9772 0.9369 1.0074 0.9919 1.0152 0.9459 0.9254 0.9971 0.9950 1.0054 0.9981 0.9054 1.0084

500 1.0022 0.9353 1.0147 1.0011 1.0167 0.9509 0.9226 1.0011 0.9979 1.0126 1.0095 0.9258 1.0105

π = (0,3,0,3,0,4)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9035 0.9036 0.9658 0.9701 0.9550 0.9281 0.7836 0.9385 0.9473 0.8932 0.8934 0.8461 0.9469

50 0.9377 0.9240 0.9735 0.9762 0.9918 0.9066 0.8345 0.9885 0.9790 0.9499 0.9478 0.9069 0.9840

100 0.9748 0.9127 1.0077 1.0011 1.0125 0.9131 0.8654 1.0028 1.0092 0.9775 0.9723 0.8854 1.0084

200 0.9869 0.9391 1.0012 0.9983 1.0195 0.9543 0.8897 0.9993 1.0108 0.9960 0.9887 0.9244 1.0242

500 1.0022 0.9132 1.0231 1.0190 1.0178 0.9341 0.9090 1.0001 0.9895 0.9853 1.0043 0.929 1.0094

π = (0,2,0,3,0,5)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.8932 0.9052 0.9794 0.9839 0.9610 0.9261 0.7714 0.9367 0.9623 0.9090 0.9068 0.9069 0.9617

50 0.9430 0.9222 0.9743 0.9757 0.9985 0.9293 0.8620 0.9950 0.9811 0.9573 0.9205 0.9073 0.9843

100 0.9735 0.9300 1.0026 0.9814 1.0076 0.9590 0.8722 1.0019 0.9958 0.9808 0.9808 0.8953 1.0024

200 0.9809 0.9414 1.0037 0.9987 1.0263 0.9637 0.9056 0.9976 1.0112 0.9954 1.0007 0.934 1.0068

500 0.9928 0.9311 1.0085 0.9991 1.0148 0.9625 0.9174 1.0012 1.0044 0.9949 1.0023 0.9311 1.0159

π = (0,1,0,3,0,6)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9189 0.9176 0.9729 0.9701 0.9816 0.9472 0.7254 0.9734 0.9831 0.9151 0.7413 0.9291 0.9776

50 0.9230 0.9347 0.9966 0.9995 1.0100 0.9396 0.7948 0.9943 1.0069 0.9677 0.8687 0.9112 0.9904

100 0.9569 0.9291 1.0197 1.0108 1.0209 0.9684 0.8703 0.9948 1.0066 0.9760 0.9542 0.9091 1.0072

200 0.9888 0.9408 1.0151 1.0069 1.0094 0.9637 0.8977 1.0205 1.0090 1.0037 0.9712 0.9523 1.0120

500 1.0045 0.9228 1.0067 1.0193 1.0140 0.9730 0.8965 1.0109 1.0036 0.9983 1.0057 0.947 1.0193

π = (0,05,0,3,0,65)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9334 0.9215 0.9830 0.9787 0.9869 0.9554 0.9343 0.9977 0.9988 0.9744 0.9791 0.9019 0.9955

50 0.9560 0.9338 1.0131 1.0082 1.0190 0.9726 0.8970 1.0058 1.0176 0.9197 0.9392 0.9449 1.0031

100 0.9682 0.9479 1.0174 1.0084 1.0294 0.9967 0.8084 1.0092 1.0045 0.9773 0.9028 0.9205 1.0146

200 0.9831 0.9254 1.0169 1.0107 1.0376 0.9942 0.8718 1.0108 1.0182 0.9919 0.9393 0.9348 1.0159

500 0.9815 0.9303 1.0090 1.0016 1.0268 0.9825 0.8945 1.0058 1.0195 1.0058 0.9869 0.9429 1.0153

π = (0,05,0,2,0,75)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9258 0.8981 0.9896 0.9892 1.0011 0.9805 0.9358 0.9880 1.0099 0.9929 0.9767 0.9381 1.0067

50 0.9313 0.9247 0.9922 0.9963 1.0147 1.0004 0.8752 1.0190 0.9951 0.9235 0.8964 0.9339 1.0141

100 0.9415 0.9463 1.0070 1.0136 1.0309 1.0123 0.8309 1.0124 1.0190 0.9624 0.8839 0.9274 1.0209

200 0.9721 0.9235 1.0184 1.0069 1.0307 1.0215 0.8909 1.0122 1.0112 0.9733 0.9565 0.9592 1.0195

500 0.9827 0.9219 1.0154 1.0165 1.0227 1.0193 0.9177 1.0049 1.0070 0.9954 0.9849 0.9167 1.0133

π = (0,05,0,1,0,85)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9816 0.9426 1.0037 0.9906 1.0096 0.9926 0.8446 1.0098 1.0217 0.9637 0.8326 0.9443 1.0181

50 0.9537 0.9381 1.0183 1.0179 1.0329 1.0271 0.8183 1.0154 1.0158 0.9138 0.8498 0.9674 1.0126

100 0.9568 0.9208 1.0107 1.0067 1.0370 1.0343 0.8242 1.0119 1.0153 0.9754 0.8694 0.9281 1.0088

200 0.9318 0.9490 1.0221 1.0096 1.0324 1.0393 0.8764 1.0033 1.0243 0.9949 0.9413 0.9458 1.0138

500 0.9514 0.9325 1.0113 1.0187 1.0166 1.0477 0.8988 1.0145 1.0208 0.9840 0.9745 0.9325 1.0166

π = (0,05,0,05,0,9)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9838 0.8925 1.0066 1.0054 1.0171 1.0039 0.9799 1.0319 1.0277 1.0422 1.0405 0.9302 1.0292

50 0.9971 0.9436 1.0231 1.0214 1.0379 1.0282 0.8215 1.0309 1.0320 0.8920 0.8596 0.9729 1.0350

100 0.9630 0.9444 1.0211 1.0161 1.0414 1.0437 0.7636 1.0233 1.0236 0.9512 0.8009 0.9254 1.0257

200 0.9448 0.9313 1.0278 1.0204 1.0329 1.0477 0.8850 1.0131 1.0110 0.9816 0.9269 0.9692 1.0110

500 0.9525 0.9157 1.0125 1.0156 1.0219 1.0519 0.8673 1.0209 1.0072 0.9935 0.9725 0.9199 1.0009

π = (0,01,0,01,0,98)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 1.0504 0.5412 0.9644 0.9776 1.0341 1.0061 1.0466 1.0480 1.0256 1.0496 1.0486 0.9713 1.0386

50 1.0501 0.7676 1.0174 1.0186 1.0433 1.0306 1.0324 1.0513 1.0312 1.0518 1.0518 0.8844 1.0450

100 1.0346 0.8388 1.0153 1.0080 1.0445 1.0448 1.0220 1.0502 1.0366 1.0524 1.0514 0.8967 1.0439

200 0.9326 0.9115 1.0136 1.0125 1.0377 1.0498 0.7589 1.0441 1.0273 1.0347 0.7978 0.9389 1.0389

500 0.8737 0.9516 1.0221 1.0252 1.0421 1.0526 0.7821 1.0210 1.0157 0.9610 0.8220 0.9537 1.0231
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Tabla 4: Índice para k = 4,5 y 10.

π = (1/4,1/4,1/4,1/4)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9917 0.8371 1.0146 1.0014 1.0018 0.8987 0.8451 0.9583 0.9761 0.8653 0.8683 0.9427 1.0131

50 0.9821 0.9313 1.0372 0.9992 1.0193 0.9669 0.8260 0.9951 1.0011 0.9407 0.9532 0.888 1.0106

100 0.9924 0.9078 1.0285 0.9928 1.0251 0.9481 0.8162 1.0221 1.0159 1.0010 0.9433 0.8793 1.0252

200 0.9721 0.8809 1.0392 1.0026 1.0308 0.9386 0.8398 1.0037 1.0079 0.9974 0.9826 0.903 1.0297

500 0.9989 0.8768 1.0378 1.0136 1.0209 0.9473 0.8810 0.9978 1.0241 0.9989 0.9915 0.8589 1.0378

π = (0,4,0,3,0,2,0,1)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9537 0.8789 1.0093 0.9939 1.0099 0.9702 0.6365 0.9863 1.0016 0.8823 0.7373 0.9021 1.0162

50 0.9587 0.9045 1.0121 1.0037 1.0279 0.9355 0.7531 1.0036 1.0205 0.9374 0.8265 0.8938 1.0350

100 0.9800 0.8679 1.0207 1.0090 1.0320 0.9502 0.8016 1.0015 1.0006 0.9931 0.9038 0.8258 1.0343

200 1.0027 0.8683 1.0383 0.9933 1.0194 0.9407 0.8430 1.0049 0.9975 0.9943 0.9701 0.9083 1.0309

500 0.9947 0.8600 1.0273 1.0073 1.0189 0.9547 0.8600 1.0115 1.0084 1.0041 0.9736 0.9052 1.0325

π = (0,7,0,2,0,05,0,05)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9415 0.8801 1.0041 0.9926 1.0230 1.0035 0.9217 1.0293 1.0185 0.9883 0.9716 0.8661 1.0329

50 0.9506 0.9130 1.0169 1.0133 1.0287 0.9920 0.8016 1.0186 1.0211 0.8552 0.8353 0.9013 1.0388

100 0.9489 0.9219 1.0295 1.0068 1.0420 1.0038 0.7167 1.0120 1.0058 0.9469 0.7838 0.903 1.0371

200 0.9745 0.8873 1.0261 1.0051 1.0324 1.0049 0.8031 1.0125 1.0220 0.9809 0.9704 0.9126 1.0314

500 0.9957 0.8674 1.0358 1.0073 1.0400 1.0052 0.8274 1.0095 1.0158 0.9926 0.9726 0.8747 1.0294

π = (0,7,0,2,0,095,0,005)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9780 0.7952 1.0252 0.9993 1.0280 1.0141 0.8485 1.0184 1.0013 0.9515 0.9452 0.8421 1.0324

50 0.9789 0.9173 1.0110 0.9998 1.0396 0.9900 0.8755 1.0076 1.0141 0.9745 0.9450 0.9109 1.0373

100 0.9900 0.8336 1.0297 1.0037 1.0295 0.9964 0.9010 1.0059 1.0186 0.9839 0.9923 0.8304 1.0384

200 0.9725 0.8326 1.0188 0.9936 1.0335 1.0080 0.8884 1.0210 1.0252 1.0157 0.9894 0.8673 1.0388

500 0.9926 0.8863 1.0263 1.0021 1.0221 1.0157 0.8305 1.0126 1.0116 0.9337 0.9316 0.8979 1.0347

π = (1/5,1/5,1/5,1/5,1/5)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9972 0.8276 1.0249 0.9938 1.0265 0.9868 0.6118 0.9511 0.9742 0.8160 0.7867 0.904 1.0339

50 0.9385 0.9102 1.0329 1.0015 1.0463 0.9521 0.7186 0.9974 1.0131 0.9624 0.8090 0.8501 1.0359

100 0.9544 0.8505 1.0423 1.0123 1.0434 0.9660 0.7284 1.0060 1.0028 0.9797 0.9113 0.7936 1.0413

200 0.9884 0.8337 1.0493 1.0105 1.0304 0.9884 0.7863 0.9989 1.0084 0.9884 0.9757 0.8537 1.0409

500 1.0084 0.8421 1.0347 1.0000 1.0253 0.9832 0.8042 0.9905 1.0137 1.0021 0.9989 0.8347 1.0452

π = (0,2,0,2,0,2,0,15,0,25)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 1.0028 0.8192 1.0231 0.9907 1.0288 0.9565 0.6959 0.9808 0.9827 0.7848 0.8130 0.8924 1.0343

50 0.9648 0.8755 1.0361 1.0141 1.0412 0.9679 0.7344 0.9923 1.0016 0.9057 0.8332 0.8375 1.0360

100 0.9650 0.8599 1.0413 1.0239 1.0434 0.9702 0.7305 0.9976 1.0155 0.9576 0.9176 0.7768 1.0382

200 0.9841 0.8474 1.0367 0.9999 1.0378 0.9673 0.7958 0.9968 0.9894 0.9884 0.9873 0.8495 1.0430

500 1.0021 0.8337 1.0452 1.0137 1.0242 0.9684 0.8032 1.0137 1.0021 0.9916 0.9842 0.8179 1.0368

π = (0,2,0,2,0,2,0,1,0,3)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9763 0.8550 1.0299 1.0068 1.0257 0.9868 0.5415 0.9937 0.9957 0.8439 0.8314 0.8536 1.0322

50 0.9555 0.8397 1.0385 1.0206 1.0446 0.9416 0.6713 0.9832 1.0102 0.9269 0.8471 0.846 1.0406

100 0.9881 0.8620 1.0351 1.0018 1.0424 0.9713 0.7368 1.0060 1.0113 0.9829 0.9324 0.7736 1.0435

200 1.0031 0.8284 1.0367 0.9968 1.0378 0.9736 0.7831 1.0021 1.0042 0.9673 0.9968 0.8484 1.0451

500 0.9863 0.8211 1.0410 1.0147 1.0274 0.9716 0.8021 1.0168 1.0074 0.9874 0.9874 0.82 1.0400

π = (0,2,0,2,0,2,0,05,0,35)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 1.0034 0.8331 1.0268 1.0032 1.0323 0.9701 0.7057 0.9905 0.9996 0.8618 0.8943 0.8082 1.0371

50 0.9694 0.8777 1.0306 1.0166 1.0399 0.9532 0.7398 1.0069 1.0136 0.8800 0.8054 0.8747 1.0456

100 0.9576 0.8273 1.0415 1.0050 1.0383 0.9387 0.7000 1.0082 1.0072 0.9650 0.9240 0.8821 1.0437

200 0.9968 0.8653 1.0409 0.9989 1.0378 0.9442 0.7695 1.0021 1.0084 0.9852 0.9810 0.8947 1.0441

500 0.9863 0.8263 1.0463 1.0053 1.0179 0.9589 0.7821 1.0084 1.0168 0.9874 0.9832 0.8316 1.0442

π = (0,05,0,05,0,05,0,05,0,8)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 0.9785 0.8230 1.0322 0.9882 1.0443 1.0373 0.9946 1.0495 1.0309 1.0457 1.0446 0.8338 1.0474

50 0.9504 0.8526 1.0328 0.9955 1.0396 1.0331 0.7158 1.0482 1.0356 0.7683 0.7715 0.8481 1.0511

100 0.9894 0.8768 1.0388 1.0000 1.0451 1.0344 0.5926 0.9968 1.0010 0.9210 0.8831 0.84 1.0399

200 0.9747 0.8063 1.0358 0.9810 1.0358 1.0315 0.7337 0.9874 0.9895 0.9558 0.9653 0.8589 1.0410

500 0.9895 0.8442 1.0474 1.0021 1.0274 1.0400 0.7842 1.0063 0.9979 0.9600 0.9695 0.8284 1.0453

π = (1/10,1/10,1/10,1/10,1/10,1/10,1/10,1/10,1/10,1/10)

N SG Bayes QH Goodm F Fitz Boot Bailey2 Bailey3 TCL TCL.cor TCL.II RV

30 1.0116 0.9558 1.0449 0.9610 1.0502 1.0379 0.0663 1.0526 1.0484 0.6558 0.6684 0.7789 1.0524

50 1.0211 0.7053 1.0515 0.9505 1.0494 1.0147 0.2263 1.0495 1.0411 0.7421 0.7232 0.7389 1.0526

100 0.9926 0.6832 1.0505 1.0105 1.0411 1.0326 0.4779 1.0168 1.0147 0.8179 0.8063 0.5653 1.0526

200 0.9874 0.6463 1.0516 0.9705 1.0463 1.0358 0.4832 1.0000 0.9989 0.9674 0.8832 0.6789 1.0516

500 0.9968 0.6558 1.0526 1.0011 1.0421 1.0379 0.5695 0.9989 1.0032 0.9589 0.9737 0.7042 1.0516
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& Hurst, que presentan niveles de confianza reales superiores al nivel nominal del 95 % pero no

necesariamente son los que tienen las longitudes más pequeñas del conjunto. Análogamente, un

intervalo con un volumen pequeño no necesariamente tiene un nivel de confianza real cercano al

nominal como sucede con los intervalos encontrados con los métodos bootstrap y Bayesiano.

Es importante anotar que el concepto de nivel de confianza real es poco manejado en la práctica,

desconociendo su importancia cuando se trabaja con procedimientos que son asintóticos, y también

se debe considerar que un nivel de confianza real superior al nivel nominal es mucho mejor que uno

por debajo, caso inverso sucede con el volumen del intervalo ya que entre más pequeño mejor es el

intervalo. Para trabajar con una combinación de nivel de confianza real y el volumen promedio

del intervalo se utiliza el siguiente ı́ndice propuesto por Correa & Sierra (2001) y presentado

en (16). Este ı́ndice es útil en el caso de la distribución multinomial puesto que L ∈ (0,1).
Idealmente, NC

R /(1 − α) → 1. Ahora, si L → ∞ y la fracción NC
R /(1 − α) → 1 o es > 1, el ı́ndice no

funciona correctamente ya que castigará el método. Por lo tanto, entre mayor sea el ı́ndice mejor

es el método. Aśı las cosas, se recomienda construir IC para los parámetros de la distribución

multinomial utilizando el método en la distribución F , seguido del método de verosimilitud relativa

y Quesenberry & Hurst.

De los resultados de las simulaciones llaman la atención los intervalos obtenidos con los métodos

basados en el Teorema del Ĺımite Central ya que en la mayoŕıa de los libros de métodos estad́ısticos

los presentan como única alternativa y, de acuerdo al ı́ndice obtenido, estos no son los más

adecuados. Este resultado se convierte en un hallazgo importante y da la posibilidad de abrir

espacios a nuevas investigaciones y cŕıticas. Otro aporte importante es la extensión del método

basado en la Razón de Verosimilitud para la construcción de IC para los parámetros de la

distribución multinomial, pues en los textos de estad́ıstica sólo se encuentra para la distribución

binomial.
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Goodman, L. A. (1965), On Simultaneous Confidence Intervals for Multinomial Proportions,

Technometrics, 7 (2), 247–254.

Kalbfleish, J. (1985), Probability and Statistical Inference, 2 edn, Springer-Verlag, New York.

Leemis, L. & Trivedi, K. (1996), A comparison of Approximate Interval Estimators for the Binomial

Parameter, The American Statistician, 50(1), 63–68.

Levin, B. (1981), A Representation for Multinomial Cumulative Distribution Functions, The Annals

of Statistics, 9 (429), 1123–1126.

May, W. & Johnson, W. (2000), Constructing Two-Sided Simultaneous Intervals for Multinomial

Proportions for Small Counts in a Large Number of Cells, Journal of Statistical Software, 5,

1–24.

Meyer, P. (1986), Probabilidad y Aplicaciones Estad́ısticas, Addison-Wesley Iberoamericana,
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