Modelo analítico y experimental del resalto hidráulico por cambio de pendientes
Palabras clave:
Resalto Hidráulico, Pendiente Adversa, Controles del Resalto, Factor de Corrección (es)Descargas
El presente trabajo investiga los resaltos hidráulicos formados por cambios de pendiente, con la pendiente adversa actuando como único control y donde la descarga en la salida es libre. Bajo esta consideración se pretende construir una teoría hidráulica que aproxime una solución teórica y experimental del resalto formado entre pendientes. Para cumplir con este objetivo se construye un modelo experimental que simule esta situación y del cual se desprenda la información necesaria para la obtención de los parámetros adimensionales que rigen en el modelo teórico. Los resultados obtenidos permiten realizar la validación del modelo teórico planteado a partir de la ecuación de conservación de movimiento, con la inclusión de factores de corrección por peso del volumen de control y por impacto de las fuerzas de fondo.
El modelo permite obtener buenos resultados en el cálculo de la profundidad secuente d2, con errores en su mayoría por debajo del 20%.
In this study, the hydraulic jump in the stilling basin with adverse slopes acting as an only control has been analyzed. A new classification of jump is also introduced. This work raise a theoretical solution to the problem of the hydraulic jump formed by changes of slope. The theoretical model applied the momentum equation. Accordingly, an experimental model is constructed to simulate the hydraulic jump; that model brings useful information to obtain the non-dimensional parameters. The experimental results demonstrate that the sequent depth ratio and lengths Le and Ls of the jump depend of the approach Froude number and the two slopes Correction factors: by the weight of water in the control volume and bottom impact, which are introduced in the theoretical model. Satisfactory agreement is found between the predicted and experimental results of the mean flow field.
Referencias
Argyropulos, A. 1962. General solution of the hydraulic jump in sloping channels. Journal of the Hydraulics Division. Proc. ASCE, 88(HY4): 61-75.
Gunal, M. y Narayanan, R. 1996. Hydraulic jump in sloping channels. Journal of hydraulic Engineering, ASCE, 436-442.
Haan, C.T. 1977. Statistical Methods in Hydrology. Ioaw State University Press. 376 p.
Hager, W. H.1992. Energy dissipators and hydraulic jump. Kluwer Academic Publishers, Dordrecht.
Khader, A. y Rajagopal S. 1972. Hydraulic jump in adverse channel slope. Irrigation and Power. India. 29(1): 77-82.
Kindsvater, C. 1944. The hydraulic jump in sloping channels. Trans. ASCE, 109: 1107-1120.
Maccorcuodale, J.A. y Mohamed, M.S. 1994. Hydraulic jumps on adverse slopes channel. Journal of Hydraulic Research, ASCE, 32(1): 119-130.
Ohtsu, I. y Yasuda, Y. 1991. Hydraulic jump in sloping channels. Journal of Hydraulic Engineering, ASCE, 117(7): 905-921.
Okada, A. y Aki, S. 1956. Experimental studies of hydraulic jump on reversed slope channel. Technical Laboratory Central Research Institute of Electric power Industry, Tokyo 5(6): 161-174.
Pagliara, S. y Peruginelli, A. 2000. Limiting and sill-controlled adverse slope hydraulic jump. Journal of the Hydraulic Engineering, ASCE, 126(11 ): 847-851.
Rajaratnam, N. 1967. The hydraulics jumps in sloping channels. Irrigation and Power, ASCE, 123(2).
Rouse, H. 1938. Fluid Mechanics for hydraulic Engineers. Published by Me Graw Hill Book Co. Inc, New york, N. Y, 301 p.
Stevens,J.C. 1944. Discussion of the paper by Carl E. Kindsvater “Hydraulic jump in sloping channels. Transactions, ASCE, 109(2228): 1107-1120.



