Evaluación de la producción de sedimentos en la cuenca del río La Miel
Palabras clave:
Modelos de Erosión, Sistemas de Información Geográfica SIG, RUSLE, Planificación de Cuencas, Pérdida de Suelo (es)Erosion Models, Geographic Information Systems (GIS), RUSLE, Watershed Planning, Soil Loss (en)
Descargas
Se presenta una aplicación de la ecuación universal de pérdida de suelos revisada (RUSLE) en la cuenca del proyecto hidroeléctrico del rio la Miel (MIEL I), usando sistemas de información geográfica (SIG). Se emplearon 13 estaciones de precipitación para estimar el factor de erosividad de la lluvia R de forma aproximada, una imagen LANDSAT para obtener el mapa de usos del suelo y el factor de cobertura vegetal C. Los factores de prácticas de conservación P y de erodabilidad del suelo K fueron obtenidos a partir de valores recomendados por otros autores según los usos y tipo de suelo predominantes en la cuenca. El factor topográfico LS fue obtenido usando dos métodos: el método tradicional de Wischmeir y Smith y el método propuesto por Hamilton y Hickey (2001). Finalmente la metodología permitió representar la Pérdida de Suelo (t/ha.año) en formato ráster e identificar las áreas con los mayores valores de pérdida de suelo.
The Revised Universal Soil Loss Equation (RUSLE) has been applied to “La Miel” hydropower project river basin (Miel I), using Geographical Information Systems (GIS). In order to estimate soil loss the following data has been considered: thirteen precipitation stations to estimate rainfall erosive R- factor in approximated form; a LANDSAT image to obtain a Land Use map and Cover management C - factor values.
The soil conservation practice P - factor and the soil erosive K - factor, were obtained from recommended values by others authors according to land use and soil properties. On the other hand, the LS factor was obtained using two methods: the traditional Wischmeir and Smith (1965) method and the Hamilton and Hickey (2001) method.
The results obtained allow estimating the soil loss (Mg ha-1 per year) in a raster format, where the areas with the highest soil loss rates were identified.
Referencias
Angima, S.D., Stott, D.E., O’Neill, M.K., Ong, C.K. y Weesies, GA. 2002. Soil erosión prediction using RUSLE for central Kenyan highland conditions. En: Elsevier, agriculture ecosystems and environment. 97 (2003) pp. 295-308.
Ascough J.C., Baffaut C., Nearing M.A, y Liu B.Y. 1997. The WEPP Watershed model: Hydrology and erosión. ASAE 40. pp. 921-933.
Carvajal, R.F., y Giráldez, J.V., 2000. Análisis de la producción de sedimentos en una cuenca con un sistema de información geográfica. El sistema Cubillas-Colomera. En: Ingeniería del agua. Vol 7, 225-236.
Chaves, H.M.L. y Nearing, M.A. 1991. Uncertaintity analysis of WEPP soil erosion model. Trans. ASAE 34. pp. 2437-2444.
Foster, G.R., y Meyer L.D. 1975. Mathematical simulation of upland erosion by fundamental erosion mechanism. USDA-ARS-S-40. p. 190.
Govindaraju, R.S. 1995. Non-Dimensional analysis of a phiysical based rainfall - runoff-erosion model over steep slopes. J.Hydrol.173. pp. 327 -341.
Grunsky C.E. 1992. Rainfall and Runoff studies. Transactions of the American society of civil engineers, pp. 66-136.
IGAC-ICA. 1988. Suelos y bosques de Colombia.
Janson, M.B. 1982. Land erosion by water in different climates. UNGI Rapport Nr 57. Uppsala University.
Lane L.J. y Nearing M.A. 1989. USDA-Water Erosion prediction project: Hillslope profile model documentation. USDA-Agricultural Research Service.
Loch, R.J. 1998. Field Rainfall simulation. In So, HB; Sheridan, GJ; loch, RJ; Caroll, C; Willgoose, A. Post -Minig landscape parameters for erosion and water quality control. Final report projects 1629 and 4011 to the Australian coal association Research program.
Morgan, R.P.C., Quinton J.N., Smith R.F.,Gover G, Posen J.W.A., Auerswald K., Chisci G, Torri D., StyezenM.EyFollyA.J.V. 1998. The European soil erosion model (EUROSEM): documentation and user guide.Silsoe College. Cranfield University, http://www.silsoe.cranfield.ac.uk./eurosem/euro3.htm
Musgrave, GW., y R.A. Norton. 1947. Soil and water conservation investigations at the Soil Conservation Experiment Station Missouri Valley Loess Region, Clarinda, Iowa, Progress report, pp. 1931-35.
Ogawa C., G Saito, N. Mino, S. Uchida, N. M. Kan y M. Shafiq. 1997. Estimation of Soil Erosion using USLE and Landsat TM in Pakistan. National Institute of Agro-environment Sciences Diane. En: Gis Development. 6p.
Plan de Gestión Ambiental Regional para Caldas PGAR 2001-2006.
Remortel, R.D.V., Hamilton M.E. y Hickey R.J. 2001. Estimating the LS factor for RUSLE through iterative slope length processing of digital elavation data within Arclnfo Grid. Catography, v 30, N°1, pp. 27-35.
Renard, K.G, Foster, GR., Weesies, GA., McCool, D.K, y Yoder, D.C. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Soil Loss Equation (RUSLE). U.S. Dept, of Agriculture, Agrie. Handbook No. 703, p. 404.
Research Systems Inc (RSI). 2002. The Environment for Visualizing Images (ENVI). Pearl East Circle Boulder, USA.
Rose, C.W. 1985. Develops in soil erosion and deposition models. Advances in Soil Science.Vol. 2. Springer-Verlag.
Schwab A, Owensby C. y Kulyingyong S. 1990. Changes in soil properties due to 40 years of fertilization. Soil Sci. 149: pp. 35-43.
Smith, D.D. 1941. Interpretation of soil conservation data for field use. Agrie. Engng 22, pp. 173-175.
Smith, D.D. y Whitt, D.M. 1947. Estimating soil losses from field areas of Claypan soils. Proc. Soil Sci. Soc. Am. 12, pp. 485-490.
Singh, V.P. 1989. Hydrologic Systems. Watershed Modeling Volumen II. Prentice Hall, Englewood Cliffs.
Sander GC. Hairsine P.B., Rose C.W., Cassidy D., Parlange J.Y.,Hogart W.L y Lisle I.G 1996. Unsteady soil erosion model, analytical solutions and camparison with experimental results. J.Hydrol.178. pp.351-367.
Steward, B. A. et al. 1975. Control of Pollution from Cropland, U.S. EPA Report No. 600/2-75-026 or U.S.D.ARep. No. ARS-H-5-1, Washington, DC.
Stocking, M., C.Kalabane. y H. Elwell. 1988. An inproved methodology for erosion mapping. Geogr.Anal.70A. pp. 169-180.
Stone R. P. y Hilbom D. 2000. Universal Soil Loss Equaiton (USLE). Ministry of agriculture and food. Ontario, Canadá.
Terrence, T.J. y Foster, R.F. 1998. Guidelines for the use of the Revised Universal Soil Loss Equation (Rusle) on Mined Lands, Construction Sites, and Reclaimed Lands. 4. pp. 1-4.13.
Wischmeier, W.H. y Smith D.D. 1965. Predicting Rainfall Erosion losses from cropland. United States Department of agricultere. Agicultural Hand Book. N 282. USDA Washington D.C .
Wischmeier, W.H., y Smith D.D. 1978. Predicting Rainfall Erosion losses a guide to conservation planning. United States Department of agriculture, Agicultural Hand Book. N 537. USDA Washington D.C .
Woolhiser, D.A., Smith RE. y Goodrich D.C. 1990. KINEROS, a Kinematic runoff and erosion model. USDA-ars-77.
Zingg, A.W. 1940. Degree and land of slope as it affects soil loss and runoff. Agric. Engg., 21. pp. 59-64.



