Dinámica de los aportes totales al sistema hidroeléctrico interconectado nacional colombiano
Palabras clave:
Hidrología, Predicción, Modelos STR, Sistema hidroeléctrico-Colombia (es)Hydrology, Prediction, STR models (en)
Descargas
En este artículo se analiza la dinámica de los aportes totales al sistema hidroeléctrico colombiano de generación desde la creación de la Bolsa de Energía, y se presenta un modelo autoregresivo de transición logística para su modelación. El modelo propuesto pasó un conjunto de pruebas estándar de diagnóstico. El análisis realizado indica que un modelo lineal autoregresivo no representa completamente las características no lineales intrínsecas a la dinámica de la serie. El modelo no lineal propuesto consta de dos modelos lineales, que representan la dinámica de los aportes ’’altos” y ’’bajos”. Aunque el modelo obtenido es caótico localmente, permite realizar la predicción de los aportes mensuales totales varios meses adelante.
In this paper the dynamic of the total flows to the Colombian hydro electrical generation system since the creation of the spot market is analyzed, and a logistic smooth transition autoregressive model is used for its representation. The proposed model passes a battery of diagnostic standard tests. The results of the realized analysis indicate that a linear autoregressive model is not being able for representing completely the intrinsic non-linear characteristics of the time series dynamic. The proposed model is formed by two linear autoregressive models representing the dynamics of the high and low flows. Although the obtained model is locally chaotic, it allows to realize the prediction for the total monthly flows several periods ahead.
Referencias
Akaike, H. (1973), Information theory and an extension of the maximum likelihood principle, in B. Petrov y F. Csaki, eds, ‘2nd International Symposium on Information Theory’, Akademia Kiado: Budapest, pp. 267-281.
Baccon, D. y Watts, D. (1971), ‘Estimating the transition between two intersecting straight lines’, Biometrika 58, 525-534.
Box, G. E. P. y Jenkins, G. M. (1970), Time Series Analysis: Forecasting and Control, Holden-Day Inc.
Box, G. y Pierce, D. (1970), ‘Distribution of residual correlations in autoregressive-integrated moving average time series models’, Journal of American Statistical Association (65), 1509-1526.
Chan, K. (1993), ‘Consistency and limiting distribution of the least squares estimator of a continuous autoregressive model’, The annals of statistics (21), 520- 533.
Efron, B. y Tibshirani, R. (1993), An Introduction to the Bootstrap, Chapman & Hall.
Eitrheim, O. y Teräsvirta, T. (1996), ‘Testing the adequancy of smooth transition autoregressive models’, Journal of Econometrics (74), 59-76.
Engle, R. (1982), ‘Autoregressive conditional heterocedasticity with estimates of the variance of united kingdom inflations’, Econometrica (50), 987-1007.
Ettestol, I. (2002), Estimating residential demand for electricity with smooth transition regression. NTNU, Trondheim, Norway.
Feng, H. y Liu, J. (2002), A setar model for Canadian gdp: Non-linearities and forecast comparisons, Working papar - issn 1486-6441, University of Victoria.
Granger, C. y Terásvirta, T. (1993), Modeling Nonlinear Economic Relationships, Oxford University Press.
Hannan, E. y Quinn, B. (1979), ‘The determination of the order of an autoregression’, Journal of Royal Statistical Society Series B (41), 190-195.
Holmes, M. y Maghrebi, N. (2002), Non-linearities, regime switching and the relationships between asian equity and foreign exchange markets, Technical report.
Jarque, C. y Bera, A. (1980), ‘Eficient tests for normality, homoscedasticy and serial independence of regression residuals’, Economic Letters (6), 255-259.
Keenan, D. (1985), ‘A turkey non-additivity-type test for time series nonlinearity’, Biometrika (72), 39-44.
Koop, G., Pesaran, M. y Potter, S. (1996), ‘Impulse response analysis in nonlinear multivariate models’, Journal of Econometrics (74), 119-147.
Ljung, L. y Box, G. (1978), ‘On a measure of lack of fit in time series models’, Biometrika (66), 67-72.
Lumnicki, Z. (1961), ‘Test for departure from normality in the case of linear stochastic processes’, Metrika (4), 37-62.
Maddala, G. S. (1977), Econometrics, McGraw-Hill.
McLeod, A. y Li, W. (1983), ‘Diagnostic checking arma time series models using squared residual autocorrelations’, Journal of Time Series Analysis (4), 269- 273.
Medeiros, M. y Veiga, A. (2002), Are there multiple regimes in financial volatility?, Technical report, Pontificia Universidad Católica do Rio de Janeiro.
Poveda, G. (2004), ‘La hidroclimatología en Colombia: una síntesis desde la escala inter-decanal hasta la escala diurna’, Revista de la Academia Colombiana de Ciencias 28(107), 201-222.
Pulgarín, A., Smith, R. y Poveda, G. (2001), Predicción del precio de la energía eléctrica con un modelo de redes neuronales y usando variables macroclimáticas, in ‘XIV Seminario Nacional de Hidráulica e Hidrología’.
Ramsev, J. (1969), ‘Tests for specification error in classical linear least-squares regression analysis’, Journal of the Royal Statistical Society B (31), 350-371.
Smith, R., Velez, J., Velásquez, J., Ceballos, A., Correa, P., Goez, C., Salazar, L. y Zapata, E. (2004), ‘Modelos de predicción de caudales mensuales para el sector eléctrico colombiano’, Avances en Recursos Hidráulicos (11).
Teräsvirta, T. (1994), ‘Specification, estimation, and evaluation of smooth transition autoregressive models’, Journal of the American Statistical Association (89), 208-218.
Theil, H. (1966), Applied Economic Forecasting, Rand McNally.
Tong, G. (1978), On a threshold model, in C. Chen, ed., ‘Pattern Recognition and Signal Processing’, Sijhoff & Noordhoff, Amsterdam.
Tong, H. (1990), Non-linear Time Series, a dynamical system approach, Oxford Statistical Science Series, Claredon Press Oxford.
Tsay, R. (1986), ‘Nonlinearity tests for time series’, Biometrika (73), 461-466.
Tsay, R. (1989), ‘Testing and modeling threshold autoregressive process’, Journal of the American Statistical Association (84), 231-240.
Tsay, R. (1998), ‘Testing and modeling multivariate threshold models’, Journal of the American Statistical Association (93), 1188-1202.
Tsay, R. (2002), Analysis of Financial Time Series, John Wiley & Sons, Inc.
Velásquez, J. D. y Dyner, I. (2001), Pronóstico de precios de bolsa de electricidad usando un modelo de redes neuronales artificiales, in ‘EITI-2001’, Universidad Nacional de Colombia.
Zapata, E., Velásquez, J. y Smith, R. (2004), ‘Modelamiento de series de caudal usando anfis’, Avances en Recursos Hidráulicos (11).



