Problemas inversos, técnicas evolutivas y agentes inteligentes: Estrechando las fronteras
Palabras clave:
Problemas Inversos, Algoritmos Evolutivos, Agentes inteligentes (es)Inverse Problems, Evolutive Algorithms, Intelligents Agents (en)
Descargas
En este artículo se exponen las características esenciales de la modelación matemática y la simulación de procesos reales. Con la intención de delegar capacidades humanas en las computadoras al aplicar técnicas evolutivas a problemas inversos, se extienden los principios de la Inteligencia Artificial en la automatización de dichas técnicas. También se describen la interacción entre categorías de agentes inteligentes para tales propósitos, así como el procesamiento del conocimiento de los mismos a un meta-nivel.
This paper resumes the essential characteristics of the mathematical modeling and simulation of real processes. With the intention of delegating most human capabilities to computers when applying evolutionary techniques to inverse problems, the principles of Artificial Intelligence regarding the automation of those techniques, are here extended. The interaction among intelligent agents categories for those purposes, as well as its knowledge processing on a meta-level are also described.
Referencias
Burkhard, H. D. (1995), Agent oriented programming for open systems, in ‘Proceedings of the ECAI-94 Workshop on Agent Theories, Architectures and Languages, The Netherland’. Lecture Notes in AI.
Bussmann, S. y Demazeau, Y. (1994), An agent model combining reactive and cognitive capabilities, in ‘Proceeding of the IEEE International Conference on Intelligent Robots and Systems’, Munich, Alemania.
García, A., González, N. y Morales, F. (1997), Diseño e implementación de sistemas multiagentes, in ‘Proceedings del Primer Simposio de Inteligencia Artificial, Conferencia Internacional de Ciencia y Tecnología para el Desarrollo CIMAF-97’, La Habana, Cuba.
Goldberg, D. E. (1989), Genetic Algorithm in Search, Optimisation and Machine Learning, Addison-Wesley, Reading, Mass.
Lindemann, G., Münch, I., Dittmann, I., Gnoth, M., Torres, E. y Hannebauer, M. (1999), ChariTime: An agent-oriented approach for appointment management in distributed working communities, in ‘Proceeding of the KI-99 Workshop Agententechnologie-Multiagentensysteme in der Informationslogistik und Witscharftswissenswissenschaftliche Perspektiven der Agenten-Konzeptionalisierung’, number 16, TZI- Bericht, Bonn, Alemania.
Lucasius, C. y Kateman, G. (1989), Application of genetic algorithms in chemometrics, in J.D. Shaffer, ed., ‘Proceeding of the Third Intenational Conference on Genetic Algorithms’, Morgan Kaufmann.
Monett, D. (1997), Genetic algorithms for the reactivity ratios determination in copolymerization, in ‘Proceedings del Primer Simposio de Inteligencia Artificial, Conferencia Internacional de Ciencia y Tecnología para el Desarrollo CIMAF-97’, La Habana, Cuba.
Monett, D. (2000), Towards and intelligent agent desing for handling genetic algorithms., in B. H. D., L. Czaja, A. Skowron y P. Starke, eds, ‘Proceedings of the Workshop on Concurrency, Specification and Programming CS&P-2000’, Vol. 1, Berlín, Alemania, pp. 149-155.
Monett, D. (2001), On the automation of evolutionary techniques and their application to inverse problems form chemical kinetics, in ‘Proceedings of the GECCO 2001, Genetic and Evolutionary Computation Conference’, San Francisco, California.
Patton, A., Punch, W. y Goodman, E. (1997), ‘A standard GA approach to native protein conformation prediction’. Genetic Algorithm Research and Application Group, Computer Science Department, Michigan State University.