Bactericidal activity of anti-ABO antibodies in isolated colonies from Escherichia coli
Actividad bactericida de anticuerpos anti-ABO en colonias aisladas de Escherichia coli
DOI:
https://doi.org/10.15446/rev.colomb.biote.v25n1.100883Palabras clave:
bactericidal capacity, anti-ABO antibodies, Escherichia coli (en)capacidad bactericida, anticuerpos anti-ABO, Escherichia coli (es)
Descargas
The interaction between ABO antigens and microorganisms, including those present in the microbiota, has been studied about the possible action of antigens and ABO antibodies in susceptibility to infectious diseases. This research aimed to determine the minimum titer of the Escherichia coli bacteria capable of undergoing in vitro bactericidal action of human anti-ABO antibodies. The selection of blood samples was performed through a questionnaire, blood phenotyping (one volunteer of each ABO phenotype), and the titration of ABO antibodies. A bacterial suspension (inoculum) was prepared and added to the serum of the volunteers, followed by inoculation in Mueller Hinton Agar. After 24 hours, the results were read and interpreted with duplicate analysis. There was no significant difference in the bactericidal test between tests 1 and 2 in blood groups A, B, AB, O, and Positive Control. There was a significant difference in pure human serum when Group A x Positive Control was analyzed, Group B x Positive Control, Group AB x Positive Control, and Group O x Positive Control. There was no significant difference in the other dilutions. It is concluded that anti-ABO antibodies have a bactericidal effect when there is a high concentration of bacteria in the environment.
Se ha estudiado la interacción entre antígenos ABO y microorganismos, incluidos los presentes en la microbiota, sobre la posible acción de antígenos y anticuerpos ABO en la susceptibilidad a enfermedades infecciosas. El objetivo de esta investigación fue determinar el título mínimo de la bacteria Escherichia coli capaz de sufrir la acción bactericida in vitro de los anticuerpos humanos anti-ABO. La selección de las muestras de sangre utilizadas se realizó mediante la aplicación de un cuestionario, fenotipado sanguíneo (un voluntario de cada fenotipo ABO) y la titulación de anticuerpos ABO. Se preparó una suspensión bacteriana (inoculo) y se agregó al suero de los voluntarios, seguido de la inoculación en Mueller Hinton Agar, luego de 24 horas, los resultados se leyeron e interpretaron con análisis por duplicado. No hubo diferencia significativa en la Prueba Bactericida entre las pruebas 1 y 2 en los grupos sanguíneos A, B, AB, O y Control Positivo. Hubo una diferencia significativa en el suero humano puro cuando se analizó el Grupo A x Control Positivo; Grupo B x Control Positivo; Grupo AB x Control Positivo y Grupo O x Control Positivo. No hubo diferencia significativa en las otras diluciones. Se concluye que los anticuerpos anti-ABO tienen efecto bactericida cuando existe una alta concentración de bacterias en el ambiente.
Referencias
Alvarado, D. X. A., Sánchez, C. A. P., & Gallegos, M. D. N. (2020). Determinación de antígenos del sistema abo, rh (DVI+, DVI-, C, c, e, E, CW) kell y coombs directo por microaglutinación en técnica de gel en pacientes pediátricos. Recimundo, 4(4), 30–39. https://doi.org/10.26820/recimundo/4.(4).noviembre.2020.30-39 DOI: https://doi.org/10.26820/recimundo/4.(4).noviembre.2020.30-39
Bermúdez, H. F. C., Collazo, J. E. M., & Forero, S. E. (2012). Caracterización de Donantes Voluntarios de Sangre por Grupo Sanguíneo ABO y Rh que Asistieron a un Banco de Sangre de La Ciudad de Tunja - Colombia. Archivos de Medicina, 12(2), 185–189. DOI: https://doi.org/10.30554/archmed.12.2.7.2012
Breiman, A., Ruven-Clouet, N., & Pendu, J. Le. (2020). Harnessing the natural anti-glycan immune response to limit the transmission of enveloped viruses such as SARS-CoV-2. PLoS Pathogens, 16(5), 8–11. https://doi.org/10.1371/journal.ppat.1008556 DOI: https://doi.org/10.1371/journal.ppat.1008556
Chakrani, Z., Robinson, K., & Taye, B. (2018). Association Between ABO Blood Groups and Helicobacter pylori Infection: A Meta-Analysis. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-36006-x DOI: https://doi.org/10.1038/s41598-018-36006-x
Chanzu, N. M., Mwanda, W., Oyugi, J., & Anzala, O. (2015). Mucosal blood group antigen expression profiles and HIV infections: A study among female sex workers in Kenya. PLoS ONE, 10(7), 1–9. https://doi.org/10.1371/journal.pone.0133049 DOI: https://doi.org/10.1371/journal.pone.0133049
Cooling, L. (2015). Blood groups in infection and host susceptibility. Clinical Microbiology Reviews, 28(3), 801–870. https://doi.org/10.1128/CMR.00109-14 DOI: https://doi.org/10.1128/CMR.00109-14
Debler, E. W., Müller, R., Hilvert, D., & Wilson, I. A. (2008). Conformational isomerism can limit antibody catalysis. Journal of Biological Chemistry, 283(24), 16554–16560. https://doi.org/10.1074/jbc.M710256200 DOI: https://doi.org/10.1074/jbc.M710256200
Ewald, D. R., & Sumner, S. C. (2016). Blood Type Biochemistry and Human Disease. Wiley Interdiscip Rev Syst Biol Med., 8(6), 517–535. https://doi.org/10.1002/wsbm.1355.Blood DOI: https://doi.org/10.1002/wsbm.1355
Focosi, D. (2020). Anti-A isohaemagglutinin titres and SARS-CoV-2 neutralization: implications for children and convalescent plasma selection. British Journal of Haematology, 190(3), e148–e150. https://doi.org/10.1111/bjh.16932 DOI: https://doi.org/10.1111/bjh.16932
Foote, J., & Milstein, C. (1994). Conformational isomerism and the diversity of antibodies. Proceedings of the National Academy of Sciences of the United States of America, 91(22), 10370–10374. https://doi.org/10.1073/pnas.91.22.10370 DOI: https://doi.org/10.1073/pnas.91.22.10370
Galili, U., Mandrell, R. E., Hamadeh, R. M., Shohet, S. B., & Griffiss, J. M. (1988). Interaction between human natural anti-α-galactosyl immunoglobulin G and bacteria of the human flora. Infection and Immunity, 56(7), 1730–1737. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC259469/ DOI: https://doi.org/10.1128/iai.56.7.1730-1737.1988
Garratty, G. (2000). Blood groups and disease: A historical perspective. Transfusion Medicine Reviews, 14(4), 291–301. https://doi.org/10.1053/tmrv.2000.16228 DOI: https://doi.org/10.1053/tmrv.2000.16228
Geraldo, A. (2013). Efeito do Consumo de Probióticos Sobre Título de Anticorpos do Sistema ABO.
Geraldo, A., & Martinello, F. (2020). A relação entre o sistema sanguíneo ABO e a COVID-19: uma revisão sistemática. Revista Brasileira de Análises Clínicas, 52(2), 143–148. https://doi.org/10.21877/2448-3877.20200016 DOI: https://doi.org/10.21877/2448-3877.20200016
Geraldo, A., Souza, A. L. De, & Martinello, F. (2016). Relationship between intestinal bifidobacteria content and ABO antibody titer. International Journal of Microbiology and Immunology Research, 4(1), 1–8. http://academeresearchjournals.org/journal/ijmir/archive/september-2016-vol.-4(1)/relationship-between-intestinal-bifidobacteria-content-and-abo-antibody-titer
Gérard, C., Maggipinto, G., & Minon, J.-M. (2020). COVID-19 and ABO blood group: another viewpoint. British Journal of Haematology, 190(2), e93–e94. https://doi.org/10.1111/bjh.16884 DOI: https://doi.org/10.1111/bjh.16884
Guerra, P. R., Trindade, A. B., Dias, V., & Cardoso, M. R. de I. (2013). Espécies do gênero Helicobacter de importância em medicina veterinária: revisão de literatura. Veterinária Em Foco, 10(2), 228–243.
Hedestam, G. B. K., Fouchier, R. A. M., Phogat, S., Burton, D. R., Sodroski, J., & Wyatt, R. T. (2008). The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nature Reviews Microbiology, 6(2), 143–155. https://doi.org/10.1038/nrmicro1819 DOI: https://doi.org/10.1038/nrmicro1819
Hirata, A. S. de L., & Haikal, M. I. A. (2021). Os efeitos da hemodiálise a longo prazo na mobilidade funcional e no equilíbrio postural em pé.
Hoiland, R. L., Fergusson, N. A., Mitra, A. R., Griesdale, D. E. G., Devine, D. V., Stukas, S., Cooper, J., Thiara, S., Foster, D., Chen, L. Y. C., Lee, A. Y. Y., Conway, E. M., Wellington, C. L., & Sekhon, M. S. (2020). The association of ABO blood group with indices of disease severity and multiorgan dysfunction in COVID-19. Blood Advances, 4(20), 4981–4989. https://doi.org/10.1182/BLOODADVANCES.2020002623 DOI: https://doi.org/10.1182/bloodadvances.2020002623
Hosoi, E. (2008). Biological and clinicel aspects of ABO blood group system. Journal of Medical Investigation, 55(3–4), 174–182. https://www.jstage.jst.go.jp/article/jmi/55/3,4/55_3,4_174/_pdf/-char/en DOI: https://doi.org/10.2152/jmi.55.174
Hutson, A. M., Atmar, R. L., Graham, D. Y., & Estes, M. K. (2003). Norwalk Virus Infection and Disease Is Associated with ABO Histo–Blood Group Type. The Journal of Infectious Diseases, 188(1), 176–177. https://doi.org/10.1086/375829 DOI: https://doi.org/10.1086/375829
Jacobs, J. F. M., Van Der Molen, R. G., Bossuyt, X., & Damoiseaux, J. (2015). Antigen excess in modern immunoassays: To anticipate on the unexpected. Autoimmunity Reviews, 14(2), 160–167. https://doi.org/10.1016/j.autrev.2014.10.018 DOI: https://doi.org/10.1016/j.autrev.2014.10.018
Jain, D., Choudhuri, J., Chauhan, R., Dorwal, P., Sharma, D., Tiwari, A. K., & Raina, V. (2017). False negative single antigen bead assay: Is it always an effect of prozone? Journal of Clinical Laboratory Analysis, 32(2), 1–5. https://doi.org/10.1002/jcla.22237 DOI: https://doi.org/10.1002/jcla.22237
Kappler, K., & Hennet, T. (2020). Emergence and significance of carbohydrate-specific antibodies. Genes and Immunity, 21(4), 224–239. https://doi.org/10.1038/s41435-020-0105-9 DOI: https://doi.org/10.1038/s41435-020-0105-9
Maranho, C. K. (2016). Prevalência de anticorpos irregulares em gestantes atendidads em serviços públicos da hemorrede de Santa Catarina. Faculdade de Medicnia de Ribeirão Preto, 1–150.
Ministéro da Saúde. (2014). Imuno-Hematologia Laboratorial. In Editora MS. http://bvsms.saude.gov.br/bvs/publicacoes/imuno_hematologia_laboratorial.pdf
Onsten, T. G. H. (2010). Assimetria de anticorpos contra os grupo sanguíneos A e B e Galα1-3Gal desfavorece o grupo sanguíneo B contra infecção por HIV - Tese de Doutorado. 1–130.
Pereira, L. M. M., & Siebert, T. H. R. (2020). Frequência Fenotípica dos Grupos Sanguíneos ABO e Fator Rh em Santarém, Pará - Brasil. Brazilian Journal of Development, 6(10), 78472–78481. https://doi.org/10.34117/bjdv6n10-324 DOI: https://doi.org/10.34117/bjdv6n10-324
Rosa, L. S. (2018). Teste De Antiglobulina Humana Indireto Em Gestantes Aloimunizadas : Uma Revisão Sistemática. 57.
Silva-filho, J. C., Melo, C. G. F. de, & Oliveira, J. L. de. (2020). The influence of ABO blood groups on COVID-19 susceptibility and severity: A molecular hypothesis based on carbohydrate-carbohydrate interactions. Medical Hypotheses, 144. DOI: https://doi.org/10.1016/j.mehy.2020.110155
Stowell, S. R., Arthur, C. M., Dias-baruffi, M., Rodrigues, L. C., Gourdine, J.-P., Heimburg-Molinaro, J., Ju, T., Molinaro, R. J., Rivera-Marrero, C., Xia, B., Smith, D. F., & Cummings, R. D. (2010). Innate immune lectins kill bacteria expressing blood group antigen. Nature Medicine, 16(3), 295–301. https://doi.org/10.1038/nm.2103.Innate DOI: https://doi.org/10.1038/nm.2103
Uchida, H., Kinoshita, H., Kawai, Y., Kitazawa, H., Miura, K., Shiiba, K., Horii, A., Kimura, K., Taketomo, N., Oda, M., Yajima, T., & Saito, T. (2006). Lactobacilli binding human A-antigen expressed in intestinal mucosa. Research in Microbiology, 157(7), 659–665. https://doi.org/10.1016/j.resmic.2006.03.001 DOI: https://doi.org/10.1016/j.resmic.2006.03.001
Velloso, J. P. L. (2018). Análise de Aspectos Estruturais em Imunoinformática Utilizando Candidatos Vacinais Contra Leishmaniose que Foram Selecionados Usando Vacinologia Reversa.
Win, N. (2011). High Titre Anti-A/B Testing of Donors within NHS Blood and Transplant (NHSBT). 1–13.
Xia, X., Li, K., Wu, L., Wang, Z., Zhu, M., Huang, B., Li, J., Wang, Z., Wu, W., Wu, M., Li, W., Li, L., Cai, Y., Bosco, B., Zhong, A., Liu, X., Lv, T., Gan, Z., Chen, G., … Wang, Q. (2020). Improved clinical symptoms and mortality among patients with severe or critical COVID-19 after convalescent plasma transfusion. Blood, 136(6), 755–759. https://doi.org/10.1182/BLOOD.2020007079 DOI: https://doi.org/10.1182/blood.2020007079
Zhang, X. F., Tan, M., Chhabra, M., Dai, Y.-C., Meller, J., & Jiang, X. (2013). Inhibition of Histo-blood Group Antigen Binding as a Novel Strategy to Block Norovirus Infections. PLoS ONE, 8(7), 12–14. https://doi.org/10.1371/journal.pone.0069379 DOI: https://doi.org/10.1371/journal.pone.0069379
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).