Publicado

2023-06-01

Biomasa residual de industria del Cannabis, una alternativa para la obtención de productos de alto valor agregado

Waste biomass from the Cannabis industry, an alternative for obtaining products of high added value

Palabras clave:

Cannabis sativa, lignocelulosa, biorefineria, hidrólisis enzimática, bioproductos (es)
Cannabis sativa, lignocellulose, biorefinery, enzymatic hydrolysis, bioproducts (en)

Descargas

Autores/as

A medida que como sociedad vamos dando más importancia a lograr una economía circular, se hace importante encontrar fuentes renovables aptas para la producción de biocombustibles y bioquímicos. En los últimos años, diversas fuentes de biomasa lignocelulósica han sido estudiadas para estos propósitos. Dentro de estas fuentes de biomasa se encuentra el cáñamo (Cannabis sativa L.), siendo parte de una industria que ha crecido a pasos agigantados en las últimas décadas, en Colombia, desde su legalización. Específicamente, la industria del cannabis medicinal es responsable de generar una enorme cantidad de residuos en forma de los tallos de la planta, considerados un subproducto de bajo valor. En esta revisión se compila la información de diferentes estudios sobre el aprovechamiento de la fracción de polisacáridos de biomasa cáñamo, mediante transformaciones químicas y bioquímicas, para la obtención de productos de valor agregado. Se encontró que la mayoría de estudios están enfocados en la obtención de bioetanol o biogás; se encontraron también reportes de otras moléculas como ácido succínico, ácido láctico, furfural, polihidroxialcanoatos y bisaboleno. La viabilidad a nivel industrial de todos estos procesos permanece siendo una incógnita, pues los pasos de pretratamiento, hidrólisis y de conversión final utilizados suelen ser costosos. Es necesario que los estudios que realicen en el futuro se enfoquen en optimizar las condiciones de estos procesos y hacerlos verdes y así asegurar que puedan ser escalados.

As we as a society, give more importance to achieving a circular economy, it becomes important to find renewable sources suitable for the production of biofuels and biochemicals. In the last years, several different sources of lignocellulosic biomass have been studied for these purposes. One of these biomass sources is hemp (Cannabis sativa L), being part of an industry that has grown through giant steps in the last decades, in Colombia, since its legalization. Specifically, the industry of medicinal hemp is responsible for the generation of huge amounts of residues in the form of the plant stalks, considered a low value subproduct. This review compiles the information of several studies about the exploitation of the polysaccharide portion of hemp biomass through chemical and biochemical transformations, obtaining value-added products. It was found that most of these studies focus on the production of bioetanol or biogas; reports of other molecules such as succinic acid, furfural, polyhydroxyalkanoates and bisabolene were also found. Industrial viability of these processes remains a question, since pretreatment, hydrolysis and final conversion steps are usually expensive. It necessary that future studies focus on optimizing conditions of these processes as well as making them green, ensuring that they can be scaled.

Referencias

Abraham, R. E., Verma, M. L., Barrow, C. J., & Puri, M. (2014). Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnology for Biofuels, 7(1), 1–12. https://doi.org/10.1186/1754-6834-7-90

Adamovičs, A., Dubrovskis, V., & Platače, R. (2014). Productivity of industrial hemp and its utilisation for anaerobic digestion. Energy Production and Management in the 21st Century, 2, 1045–1055. https://doi.org/10.2495/EQ140982

Ahmed, B. (2021). Degumming of Hemp Fibers Using Combined Microwave Energy Degumming of Hemp Fibers Using Combined Microwave Energy and Deep Eutectic Solvent and Deep Eutectic Solvent [Louisiana State University]. https://digitalcommons.lsu.edu/gradschool_theses

Al-Battashi, H. S., Annamalai, N., Sivakumar, N., Al-Bahry, S., Tripathi, B. N., Nguyen, Q. D., & Gupta, V. K. (2019). Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Reviews in Environmental Science and Biotechnology, 18(1), 183–205. https://doi.org/10.1007/s11157-018-09488-4

Asquer, C., Melis, E., Scano, E. A., & Carboni, G. (2019). Opportunities for Green Energy through emerging crops: Biogas valorization of cannabis sativa l. residues. Climate, 7(12). https://doi.org/10.3390/cli7120142

Awan, S., Ippolito, J. A., Ullman, J. L., Ansari, K., Cui, L., & Siyal, A. A. (2021). Biochars reduce irrigation water sodium adsorption ratio. Biochar, 3(1), 77–87. https://doi.org/10.1007/s42773-020-00073-z

Barta, Z., Oliva, J. M., Ballesteros, I., Dienes, D., Ballesteros, M., & Réczey, K. (2010). Refining hemp hurds into fermentable sugars or ethanol. Chemical and Biochemical Engineering Quarterly, 24(3), 331–339.

Barta, Zsolt, Kreuger, E., & Björnsson, L. (2013). Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas , heat and electricity production from industrial hemp. Biotechnology for Biofuels, 6(56).

Berchem, T., Schmetz, Q., Lepage, T., & Richel, A. (2020). Single and Mixed Feedstocks Biorefining: Comparison of Primary Metabolites Recovery and Lignin Recombination During an Alkaline Process. Frontiers in Chemistry, 8(June). https://doi.org/10.3389/fchem.2020.00479

Bokhari, S. M. Q., Chi, K., & Catchmark, J. M. (2021). Structural and physico-chemical characterization of industrial hemp hurd: Impacts of chemical pretreatments and mechanical refining. Industrial Crops and Products, 171(July), 113818. https://doi.org/10.1016/j.indcrop.2021.113818

Bolton, L., Joseph, S., Greenway, M., Donne, S., Munroe, P., & Marjo, C. E. (2019). Phosphorus adsorption onto an enriched biochar substrate in constructed wetlands treating wastewater. Ecological Engineering: X, 1(April), 1–8. https://doi.org/10.1016/j.ecoena.2019.100005

Brazdausks, P., Paze, A., Rizhikovs, J., Puke, M., Meile, K., Vedernikovs, N., Tupciauskas, R., & Andzs, M. (2016). Effect of aluminium sulphate-catalysed hydrolysis process on furfural yield and cellulose degradation of Cannabis sativa L. shives. Biomass and Bioenergy, 89, 98–104. https://doi.org/10.1016/j.biombioe.2016.01.016

Buck, M., & Senn, T. (2016). Energy self-sufficient production of bioethanol from a mixture of hemp straw and triticale seeds: Life-cycle analysis. Biomass and Bioenergy, 95, 99–108. https://doi.org/10.1016/j.biombioe.2016.09.018

Crini, G., Lichtfouse, E., Morin-crini, N., & Chanet, G. (2020). Traditional and New Applications of Hemp. Sustainable Agriculture Reviews, 42. https://doi.org/10.1007/978-3-030-41384-2

Das, L., Li, W., Dodge, L. A., Stevens, J. C., Williams, D. W., Hu, H., Li, C., Ray, A. E., & Shi, J. (2020). Comparative Evaluation of Industrial Hemp Cultivars: Agronomical Practices, Feedstock Characterization, and Potential for Biofuels and Bioproducts. ACS Sustainable Chemistry & Engineering, 8, 6200–6210. https://doi.org/10.1021/acssuschemeng.9b06145

Das, L., Liu, E., Saeed, A., Williams, D. W., Hu, H., Li, C., Ray, A. E., & Shi, J. (2017). Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresource Technology, 244(August), 641–649. https://doi.org/10.1016/j.biortech.2017.08.008

Fatih Demirbas, M., Balat, M., & Balat, H. (2011). Biowastes-to-biofuels. Energy Conversion and Management, 52(4), 1815–1828. https://doi.org/10.1016/j.enconman.2010.10.041

Frankowski, J., Wawro, A., Batog, J., & Burczyk, H. (2021). New Polish Oilseed Hemp Cultivar Henola–Cultivation, Properties and Utilization for Bioethanol Production. Journal of Natural Fibers, 00(00), 1–13. https://doi.org/10.1080/15440478.2021.1944439

Gandolfi, S., Pistone, L., Ottolina, G., Xu, P., & Riva, S. (2015). Hemp hurds biorefining: A path to green l-(+)-lactic acid production. Bioresource Technology, 191, 59–65. https://doi.org/10.1016/j.biortech.2015.04.118

Garcia-Jaldon, C., Dupeyre, D., & Vignon, M. R. (1998). Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass and Bioenergy, 14(3), 251–260. https://doi.org/10.1016/S0961-9534(97)10039-3

Geun, C., Meng, X., Pu, Y., & Ragauskas, A. J. (2020). The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies : A comprehensive review. Bioresource Technology, 301(January), 122784. https://doi.org/10.1016/j.biortech.2020.122784

Giraldo, J. M., Benítez Benítez, R., Sarria-Villa, R. A., Arango, P. A., & Franco, J. M. (2019). Determinación y comparación cualitativa de cannabinoides presentes en productos naturales comerciales del departamento del Cauca-Colombia. Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(3), 789–810. https://doi.org/10.15446/rcciquifa.v48n3.84992

Gomez, F. P., Hu, J., & Clarke, M. A. (2021). Cannabis as a Feedstock for the Production of Chemicals, Fuels, and Materials: A Review of Relevant Studies to Date. Energy and Fuels, 35(7), 5538–5557. https://doi.org/10.1021/acs.energyfuels.0c04121

Gulmen, M. U. (2021). Development of a recombinant brewing yeast to produce beer from hemp extract ( Cannabis Sativa L .) [Western University]. https://ir.lib.uwo.ca/etd/7614

Gunasekaran, S. S., & Badhulika, S. (2021). High-performance solid-state supercapacitor based on sustainable synthesis of meso-macro porous carbon derived from hemp fibres via CO2 activation. Journal of Energy Storage, 41(July), 102997. https://doi.org/10.1016/j.est.2021.102997

Gunnarsson, I. B., Kuglarz, M., Karakashev, D., & Angelidaki, I. (2015). Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.). Bioresource Technology, 182, 58–66. https://doi.org/10.1016/j.biortech.2015.01.126

Hossain, M., Wu, W., Xu, W., Chowdhury, M., Jhawar, A., Machin, D., & Charpentier, P. (2018). High-Surface-Area Mesoporous Activated Carbon from Hemp Bast Fiber Using Hydrothermal Processing. C, 4(3), 38. https://doi.org/10.3390/c4030038

Jami, T., Karade, S. R., & Singh, L. P. (2019). A review of the properties of hemp concrete for green building applications. Journal of Cleaner Production, 239, 117852. https://doi.org/10.1016/J.JCLEPRO.2019.117852

Ji, A., Jia, L., Kumar, D., & Yoo, C. G. (2021). Recent advancements in biological conversion of industrial hemp for biofuel and value-added products. Fermentation, 7(1). https://doi.org/10.3390/fermentation7010006

Joo, Y., & Shin, S. (2011). Compositional changes in industrial hemp biomass ( Cannabis sativa L .) induced by electron beam irradiation Pretreatment. Biomass and Bioenergy, 35(7), 3267–3270. https://doi.org/10.1016/j.biombioe.2011.04.011

Keiller, B. G., Potter, M., Burton, R. A., & van Eyk, P. J. (2021). Elucidating the degradation reaction pathways for the hydrothermal carbonisation of hemp via biochemical compositional analysis. Fuel, 294(March). https://doi.org/10.1016/j.fuel.2021.120450

Khattab, M. M., & Dahman, Y. (2019). Production and recovery of poly-3-hydroxybutyrate bioplastics using agro-industrial residues of hemp hurd biomass. Bioprocess and Biosystems Engineering, 42(7), 1115–1127. https://doi.org/10.1007/s00449-019-02109-6

Kreuger, E., Sipos, B., Zacchi, G., Svensson, S. E., & Björnsson, L. (2011). Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production. Bioresource Technology, 102(3), 3457–3465. https://doi.org/10.1016/j.biortech.2010.10.126

Kuglarz, M., Alvarado-Morales, M., Karakashev, D., & Angelidaki, I. (2016). Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresource Technology, 200, 639–647. https://doi.org/10.1016/j.biortech.2015.10.081

Kuglarz, M., Gunnarsson, I. B., Svensson, S. E., Prade, T., Johansson, E., & Angelidaki, I. (2014). Ethanol production from industrial hemp: Effect of combined dilute acid/steam pretreatment and economic aspects. Bioresource Technology, 163, 236–243. https://doi.org/10.1016/j.biortech.2014.04.049

Lavoie, J. M., & Beauchet, R. (2012). Biorefinery of Cannabis sativa using one- and two-step steam treatments for the production of high quality fibres. Industrial Crops and Products, 37(1), 275–283. https://doi.org/10.1016/j.indcrop.2011.11.016

Liu, S., Ge, L., Gao, S., Zhuang, L., Zhu, Z., & Wang, H. (2017). Activated carbon derived from bio-waste hemp hurd and retted hemp hurd for CO2 adsorption. Composites Communications, 5(June), 27–30. https://doi.org/10.1016/j.coco.2017.06.002

López, G. E. Á., Brindis, F., Niizawa, S. C., & Martínez, R. V. (2014). Cannabis sativa L., una planta singular. Revista Mexicana de Ciencias Farmaceuticas, 45(4).

Maitan-Alfenas, G. P., Visser, E. M., & Guimarães, V. ria M. (2015). Enzymatic hydrolysis of lignocellulosic biomass: Converting food waste in valuable products. Current Opinion in Food Science, 1(1), 44–49. https://doi.org/10.1016/j.cofs.2014.10.001

Manaia, J. P., Manaia, A. T., & Rodriges, L. (2019). Industrial hemp fibers: An overview. Fibers, 7(12), 1–16. https://doi.org/10.3390/?b7120106

Marrot, L., Candelier, K., Valette, J., Lanvin, C., Horvat, B., Legan, L., & DeVallance, D. B. (2021). Valorization of Hemp Stalk Waste Through Thermochemical Conversion for Energy and Electrical Applications. Waste and Biomass Valorization, November. https://doi.org/10.1007/s12649-021-01640-6

Martínez, N. (2019). Los desafíos del cannabis medicinal en Colombia. Una mirada a los medianos y pequeños productores. Informe sobre políticas de drogas, 1–28. https://www.tni.org/files/publication-downloads/policybrief_52_web.pdf

Matassa, S., Esposito, G., Pirozzi, F., & Papirio, S. (2020). Exploring the biomethane potential of different industrial hemp (Cannabis sativa L.) biomass residues. Energies, 13(13). https://doi.org/10.3390/en13133361

Morin-Crini, N., Loiacono, S., Placet, V., Torri, G., Bradu, C., Kostić, M., Cosentino, C., Chanet, G., Martel, B., Lichtfouse, E., & Crini, G. (2019). Hemp-based adsorbents for sequestration of metals: a review. Environmental Chemistry Letters, 17(1), 393–408. https://doi.org/10.1007/s10311-018-0812-x

Moxley, G., Zhu, Z., & Zhang, Y. H. P. (2008). Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. Journal of Agricultural and Food Chemistry, 56(17), 7885–7890. https://doi.org/10.1021/jf801303f

Muangmeesri, S., Li, N., Georgouvelas, D., Ouagne, P., Placet, V., Mathew, A. P., & Samec, J. S. M. (2021). Holistic Valorization of Hemp through Reductive Catalytic Fractionation. ACS Sustainable Chemistry and Engineering, 9(51), 17207–17213. https://doi.org/10.1021/acssuschemeng.1c06607

Pakarinen, A., Zhang, J., Brock, T., Maijala, P., & Viikari, L. (2012). Enzymatic accessibility of fiber hemp is enhanced by enzymatic or chemical removal of pectin. Bioresource Technology, 107, 275–281. https://doi.org/10.1016/j.biortech.2011.12.101

Parvez, A. M., Lewis, J. D., & Afzal, M. T. (2021). Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook. Renewable and Sustainable Energy Reviews, 141(August 2019), 110784. https://doi.org/10.1016/j.rser.2021.110784

Peterson, E. (2019). Industry Report: The State of Hemp and Cannabis Waste. https://companyweek.com/article/industry-report-the-state-of-hemp-and-cannabis-waste

Prade, T., Svensson, S. E., & Mattsson, J. E. (2012). Energy balances for biogas and solid biofuel production from industrial hemp. Biomass and Bioenergy, 40, 36–52. https://doi.org/10.1016/j.biombioe.2012.01.045

Ramírez, M. (2019). La Industria del Cannabis Medicinal en Colombia. Fedesarrollo, 1–61. https://www.fedesarrollo.org.co/

Rehman, M., Fahad, S., Du, G., Cheng, X., Yang, Y., Tang, K., Liu, L., Liu, F. H., & Deng, G. (2021). Evaluation of hemp (Cannabis sativa L.) as an industrial crop: a review. Environmental Science and Pollution Research, 28(38), 52832–52843. https://doi.org/10.1007/s11356-021-16264-5

Rehman, M. S. U., Rashid, N., Saif, A., Mahmood, T., & Han, J. I. (2013). Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renewable and Sustainable Energy Reviews, 18, 154–164. https://doi.org/10.1016/j.rser.2012.10.019

Rizhikovs, J., Brazdausks, P., Dobele, G., Jurkjane, V., Paze, A., Meile, K., & Puke, M. (2019). Pretreated hemp shives: Possibilities of conversion into levoglucosan and levoglucosenone. Industrial Crops and Products, 139(June), 111520. https://doi.org/10.1016/j.indcrop.2019.111520

Salinas, O. A., Benítez Benítez, R., & Martin Franco, J. (2020). Chemical Modification of Fique Fiber by Alkalization and Esterification Utilizing Fique Fiber Dust as Residue of the Fiquera Industry. Journal of Natural Fibers, 00(00), 1–9. https://doi.org/10.1080/15440478.2020.1841061

Salinas, O. A., Benítez, R., & Martin, J. (2019). Un medio de reacción verde para la modificación de celulosa de residuos lignocelulósicos de la industria fiquera. Informador Técnico, 83(2), 9–12.

Semhaoui, I., Maugard, T., Zarguili, I., Rezzoug, S. A., Zhao, J. M. Q., Toyir, J., Nawdali, M., & Maache-Rezzoug, Z. (2018). Eco-friendly process combining acid-catalyst and thermomechanical pretreatment for improving enzymatic hydrolysis of hemp hurds. Bioresource Technology, 257(February), 192–200. https://doi.org/10.1016/j.biortech.2018.02.107

Shin, S., & Han, S. (2008). Chemical Characterization of Industrial Hemp (Cannabis sativa) Biomass as Biorefinery Feedstock. Korean Journal of Plant Resources, 21(3), 222–225.

Shin, S. J., & Sung, Y. J. (2008). Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation. Radiation Physics and Chemistry, 77(9), 1034–1038. https://doi.org/10.1016/j.radphyschem.2008.05.047

Sidana, A., & Yadav, S. K. (2022). Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly , non-conventional methods. Journal of Cleaner Production, 335(September 2021), 130286. https://doi.org/10.1016/j.jclepro.2021.130286

Singh, P., Garnæs, J., Tunjic, S., Mokkapati, R. S. S., Thygesen, A., Mackevica, A., Mateiu, V., Daugaard, E., & Mijakovic, I. (2018). Green synthesis of gold and silver nanoparticles from Cannabis sativa ( industrial hemp ) and their capacity for biofilm inhibition. International Journal of Nanomedicine, 13, 3571–3591.

Sipos, B., Kreuger, E., Svensson, S. E., Réczey, K., Björnsson, L., & Zacchi, G. (2010). Steam pretreatment of dry and ensiled industrial hemp for ethanol production. Biomass and Bioenergy, 34(12), 1721–1731. https://doi.org/10.1016/j.biombioe.2010.07.003

Small, E. (2018). Dwarf germplasm : the key to giant Cannabis hempseed and cannabinoid crops. Genetic Resources and Crop Evolution, 65(4), 1071–1107. https://doi.org/10.1007/s10722-017-0597-y

Smuga-Kogut, M., Kogut, T., Markiewicz, R., & Słowik, A. (2021). Use of machine learning methods for predicting amount of bioethanol obtained from lignocellulosic biomass with the use of ionic liquids for pretreatment. Energies, 14(1). https://doi.org/10.3390/en14010243

Stevulova, N., Cigasova, J., Estokova, A., Terpakova, E., Geffert, A., Kacik, F., Singovszka, E., & Holub, M. (2014). Properties Characterization of Chemically Modified Hemp Hurds. Materials, 7(December), 8131–8150. https://doi.org/10.3390/ma7128131

Sun, W., Lipka, S. M., Swartz, C., Williams, D., & Yang, F. (2016). Hemp-derived activated carbons for supercapacitors. Carbon, 103, 181–192. https://doi.org/10.1016/j.carbon.2016.02.090

Vignon, M. R., Garcia-Jaldon, C., & Dupeyre, D. (1995). Steam explosion of woody hemp chènevotte. International Journal of Biological Macromolecules, 17(6), 395–404. https://doi.org/10.1016/0141-8130(96)81852-6

Viswanathan, M. B., Cheng, M. H., Clemente, T. E., Dweikat, I., & Singh, V. (2021). Economic perspective of ethanol and biodiesel coproduction from industrial hemp. Journal of Cleaner Production, 299, 126875. https://doi.org/10.1016/j.jclepro.2021.126875

Viswanathan, M. B., Park, K., Cheng, M. H., Cahoon, E. B., Dweikat, I., Clemente, T., & Singh, V. (2020). Variability in structural carbohydrates, lipid composition, and cellulosic sugar production from industrial hemp varieties. Industrial Crops and Products, 157(August), 112906. https://doi.org/10.1016/j.indcrop.2020.112906

Wawro, A., Batog, J., & Gieparda, W. (2021). Polish varieties of industrial hemp and their utilisation in the efficient production of lignocellulosic ethanol. Molecules, 26(21), 1–16. https://doi.org/10.3390/molecules26216467

Zhao, J., Griffin, J., Roozeboom, K., Lee, J., & Wang, D. (2021). Lignin, sugar, and furan production of industrial hemp biomass via an integrated process. Industrial Crops and Products, 172(May), 114049. https://doi.org/10.1016/j.indcrop.2021.114049

Zhao, J., Xu, Y., Wang, W., Griffin, J., Roozeboom, K., & Wang, D. (2020). Bioconversion of industrial hemp biomass for bioethanol production: A review. Fuel, 281(June). https://doi.org/10.1016/j.fuel.2020.118725

Zhao, J., Xu, Y., Wang, W., Griffin, J., & Wang, D. (2020a). Conversion of liquid hot water, acid and alkali pretreated industrial hemp biomasses to bioethanol. Bioresource Technology, 309(March), 123383. https://doi.org/10.1016/j.biortech.2020.123383

Zhao, J., Xu, Y., Wang, W., Griffin, J., & Wang, D. (2020b). High Ethanol Concentration (77 g/L) of Industrial Hemp Biomass Achieved through Optimizing the Relationship between Ethanol Yield/Concentration and Solid Loading. ACS Omega, 5(34), 21913–21921. https://doi.org/10.1021/acsomega.0c03135

Cómo citar

APA

Pérez Aguilar, J. A., Martin Franco, J. y Benítez Benítez, R. (2023). Biomasa residual de industria del Cannabis, una alternativa para la obtención de productos de alto valor agregado. Revista Colombiana de Biotecnología, 25(1), 92–103. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/102648

ACM

[1]
Pérez Aguilar, J.A., Martin Franco, J. y Benítez Benítez, R. 2023. Biomasa residual de industria del Cannabis, una alternativa para la obtención de productos de alto valor agregado. Revista Colombiana de Biotecnología. 25, 1 (ago. 2023), 92–103.

ACS

(1)
Pérez Aguilar, J. A.; Martin Franco, J.; Benítez Benítez, R. Biomasa residual de industria del Cannabis, una alternativa para la obtención de productos de alto valor agregado. Rev. colomb. biotecnol. 2023, 25, 92-103.

ABNT

PÉREZ AGUILAR, J. A.; MARTIN FRANCO, J.; BENÍTEZ BENÍTEZ, R. Biomasa residual de industria del Cannabis, una alternativa para la obtención de productos de alto valor agregado. Revista Colombiana de Biotecnología, [S. l.], v. 25, n. 1, p. 92–103, 2023. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/102648. Acesso em: 13 ago. 2024.

Chicago

Pérez Aguilar, Juan Alejandro, Jaime Martin Franco, y Ricardo Benítez Benítez. 2023. «Biomasa residual de industria del Cannabis, una alternativa para la obtención de productos de alto valor agregado». Revista Colombiana De Biotecnología 25 (1):92-103. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/102648.

Harvard

Pérez Aguilar, J. A., Martin Franco, J. y Benítez Benítez, R. (2023) «Biomasa residual de industria del Cannabis, una alternativa para la obtención de productos de alto valor agregado», Revista Colombiana de Biotecnología, 25(1), pp. 92–103. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/102648 (Accedido: 13 agosto 2024).

IEEE

[1]
J. A. Pérez Aguilar, J. Martin Franco, y R. Benítez Benítez, «Biomasa residual de industria del Cannabis, una alternativa para la obtención de productos de alto valor agregado», Rev. colomb. biotecnol., vol. 25, n.º 1, pp. 92–103, ago. 2023.

MLA

Pérez Aguilar, J. A., J. Martin Franco, y R. Benítez Benítez. «Biomasa residual de industria del Cannabis, una alternativa para la obtención de productos de alto valor agregado». Revista Colombiana de Biotecnología, vol. 25, n.º 1, agosto de 2023, pp. 92-103, https://revistas.unal.edu.co/index.php/biotecnologia/article/view/102648.

Turabian

Pérez Aguilar, Juan Alejandro, Jaime Martin Franco, y Ricardo Benítez Benítez. «Biomasa residual de industria del Cannabis, una alternativa para la obtención de productos de alto valor agregado». Revista Colombiana de Biotecnología 25, no. 1 (agosto 30, 2023): 92–103. Accedido agosto 13, 2024. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/102648.

Vancouver

1.
Pérez Aguilar JA, Martin Franco J, Benítez Benítez R. Biomasa residual de industria del Cannabis, una alternativa para la obtención de productos de alto valor agregado. Rev. colomb. biotecnol. [Internet]. 30 de agosto de 2023 [citado 13 de agosto de 2024];25(1):92-103. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/102648

Descargar cita

Visitas a la página del resumen del artículo

450

Descargas

Los datos de descargas todavía no están disponibles.