Biofuncionalización de superficies a base de fibroína para su potencial uso en aplicaciones cardiovasculares
Biofunctionalization of silk fibroin-based surfaces for potential use in cardiovascular applications
DOI:
https://doi.org/10.15446/rev.colomb.biote.v25n2.103560Palabras clave:
Biofuncionalización, actividad antitrombogénica, superficie (es)Biofunctionalization, antithrombogenic activity, surface (en)
Descargas
En el presente trabajo, se biofuncionalizaron con heparina películas fabricadas a base de fibroína (SF) y polivinil alcohol (PVA) utilizando dos técnicas diferentes, la primera por acople de carbodiimida y la segunda por aprovechamiento de interacciones electrostáticas, buscando conseguir un comportamiento antitrombogénico en la superficie de las películas fabricas para su potencial uso como biomateriales para la fabricación de implantes cardiovasculares. Las muestras biofuncionalizadas fueron sometidas a una prueba de coagulación de sangre para verificar el éxito de dicha biofuncionalización. Los resultados mostraron que las muestras biofuncionalizadas por acople de carbodiimida, además de presentar una actividad antitrombogénica superior a las biofuncionalizadas por aprovechamiento de interacciones electrostáticas, presentaban valores de ángulos de contacto más cercanos a los de los materiales para la fabricación de implantes cardiovasculares, y que también, la biofuncionalización no afecta significativamente las propiedades mecánicas y superficiales de las películas fabricadas.
In the present work, fibroin, and polyvinyl alcohol (PVA) - based films were biofunctionalized using two different techniques, the first by carbodiimide coupling and second by exploiting electrostatic interactions, seeking to achieve antithrombogenic behavior on the surface of the manufactured films for their potential use as biomaterials for the manufacture of cardiovascular implants. The biofunctionalized samples were submitted to the blood clotting test to verify the success of said biofunctionalization. The results showed that the samples biofunctionalized by carbodiimide coupling, in addition to presenting a higher antithrombogenic activity than those biofunctionalized by taking advantage of electrostatic interactions, presented contact angles values closer to those of the materials for the manufacture of cardiovascular implants, and that also, the biofunctionalization does not significantly affect the mechanical and surface properties of the fabricated films.
Referencias
Adalı, T., & Uncu, M. (2016). Silk fibroin as a non-thrombogenic biomaterial. International Journal of Biological Macromolecules, 90, 11–19. https://doi.org/10.1016/j.ijbiomac.2016.01.088 DOI: https://doi.org/10.1016/j.ijbiomac.2016.01.088
Allardyce, B. J., Rajkhowa, R., Dilley, R. J., Redmond, S. L., Atlas, M. D., & Wang, X. (2017). Glycerol-plasticised silk membranes made using formic acid are ductile, transparent and degradation-resistant. Materials Science and Engineering C, 80, 165–173. https://doi.org/10.1016/j.msec.2017.05.112 DOI: https://doi.org/10.1016/j.msec.2017.05.112
ASTM (D638-02a). (2003). American Society for Testing and Materials. Standard test method for tensile properties of plastics (D 638 - 02a) - SCAN VERSION. Astm, 08, 46–58. https://doi.org/10.1520/D0638-14.1
Atlan, M., Simon-Yarza, T., Ino, J. M., Hunsinger, V., Corté, L., Ou, P., Aid-Launais, R., Chaouat, M., & Letourneur, D. (2018). Design, characterization and in vivo performance of synthetic 2 mm-diameter vessel grafts made of PVA-gelatin blends. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-25703-2 DOI: https://doi.org/10.1038/s41598-018-25703-2
Barco, S., Mahmoudpour, S. H., Valerio, L., Klok, F. A., Münzel, T., Middeldorp, S., Ageno, W., Cohen, A. T., Hunt, B. J., & Konstantinides, S. V. (2020). Trends in mortality related to pulmonary embolism in the European Region, 2000–15: analysis of vital registration data from the WHO Mortality Database. The Lancet Respiratory Medicine, 8(3), 277–287. https://doi.org/10.1016/S2213-2600(19)30354-6 DOI: https://doi.org/10.1016/S2213-2600(19)30354-6
Castillo-Cruz, O., Avilés, F., Vargas-Coronado, R., Cauich-Rodríguez, J. V., Chan-Chan, L. H., Sessini, V., & Peponi, L. (2019). Mechanical properties of L-lysine based segmented polyurethane vascular grafts and their shape memory potential. Materials Science and Engineering C, 102(November 2018), 887–895. https://doi.org/10.1016/j.msec.2019.04.073 DOI: https://doi.org/10.1016/j.msec.2019.04.073
Cestari, M., Muller, V., Rodrigues, J. H. D. S., Nakamura, C. V., Rubira, A. F., & Muniz, E. C. (2014). Preparing silk fibroin nanofibers through electrospinning: Further heparin immobilization toward hemocompatibility improvement. Biomacromolecules, 15(5), 1762–1767. https://doi.org/10.1021/bm500132g DOI: https://doi.org/10.1021/bm500132g
Deschka, M. (2011). La extracción de sangre en la práctica. Sarstedt, 100.
https://www.sarstedt.com/fileadmin/user_upload/99_Literatur/Spanisch/492_MarcDeschka_BE_ES_0114.pdf
Elahi, M. F., Guan, G., Wang, L., & King, M. W. (2014). Influence of layer-by-layer polyelectrolyte deposition and EDC/NHS activated heparin immobilization onto silk fibroin fabric. Materials, 7(4), 2956–2977. https://doi.org/10.3390/ma7042956 DOI: https://doi.org/10.3390/ma7042956
Kara, F., Aksoy, E. A., Calamak, S., Hasirci, N., & Aksoy, S. (2016). Immobilization of heparin on chitosan-grafted polyurethane films to enhance anti-adhesive and antibacterial properties. Journal of Bioactive and Compatible Polymers, 31(1), 72–90. https://doi.org/10.1177/0883911515598794 DOI: https://doi.org/10.1177/0883911515598794
Koobatian, M. T., Row, S., Smith, R. J., Koenigsknecht, C., Andreadis, S. T., & Swartz, D. D. (2016). Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials, 76, 344–358. https://doi.org/10.1016/j.biomaterials.2015.10.020 DOI: https://doi.org/10.1016/j.biomaterials.2015.10.020
Martin, V., Ribeiro, I. A., Alves, M. M., Gonçalves, L., Claudio, R. A., Grenho, L., Fernandes, M. H., Gomes, P., Santos, C. F., & Bettencourt, A. F. (2019). Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration.
Materials Science and Engineering C, 101(November 2018), 15–26. https://doi.org/10.1016/j.msec.2019.03.056 DOI: https://doi.org/10.1016/j.msec.2019.03.056
Meng, N., Chu, X., Ge, M. Q., Zhang, M., Sun, B., Su, Y. T., & Zhou, N. L. (2018). Preparation and characterization of Lecithin–heparin intercalated in montmorillonite nanocomposite. Applied Clay Science, 162(December 2016), 454–460. https://doi.org/10.1016/j.clay.2018.06.019 DOI: https://doi.org/10.1016/j.clay.2018.06.019
Menzies, K. L., & Jones, L. (2010). The impact of contact angle on the biocompatibility of biomaterials. Optometry and Vision Science, 87(6), 387–399. https://doi.org/10.1097/OPX.0b013e3181da863e DOI: https://doi.org/10.1097/OPX.0b013e3181da863e
Pakzad, Y., Fathi, M., & Mozafari, M. (2019). Characterization methodologies of functional polymers. In Advanced Functional Polymers for Biomedical Applications. Elsevier Inc. https://doi.org/10.1016/b978-0-12-816349-8.00017-5 DOI: https://doi.org/10.1016/B978-0-12-816349-8.00017-5
Qiu, X., Lee, B. L. P., Ning, X., Murthy, N., Dong, N., & Li, S. (2017). End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft. Acta Biomaterialia, 51, 138–147. https://doi.org/10.1016/j.actbio.2017.01.012 DOI: https://doi.org/10.1016/j.actbio.2017.01.012
Shi, P., Zhang, L., Tian, W., Li, H., Wang, Q., Yi, H., Yin, Y., Wang, A., Ning, P., Dong, F., & Wang, J. (2019). Preparation and anticoagulant activity of functionalised silk fibroin. Chemical Engineering Science. https://doi.org/10.1016/j.ces.2019.01.022 DOI: https://doi.org/10.1016/j.ces.2019.01.022
Song, J. E., Sim, B. R., Jeon, Y. S., Kim, H. S., Shin, E. Y., Carlomagno, C., & Khang, G. (2019). Characterization of surface modified glycerol/silk fibroin film for application to corneal endothelial cell regeneration. Journal of Biomaterials Science, Polymer Edition, 30(4), 263–275. https://doi.org/10.1080/09205063.2018.1535819 DOI: https://doi.org/10.1080/09205063.2018.1535819
Suuronen, E. J., & Ruel, M. (2015). Biomaterials for cardiac regeneration. In Biomaterials for Cardiac Regeneration. https://doi.org/10.1007/978-3-319-10972-5 DOI: https://doi.org/10.1007/978-3-319-10972-5
Tanaka, T., Tanaka, R., Ogawa, Y., Takagi, Y., Sata, M., & Asakura, T. (2021). Evaluation of small-diameter silk vascular grafts implanted in dogs. JTCVS Open, 6(June), 148–156. https://doi.org/10.1016/j.xjon.2021.02.008 DOI: https://doi.org/10.1016/j.xjon.2021.02.008
Wang, D., Liu, H., & Fan, Y. (2017). Silk fibroin for vascular regeneration. Microscopy Research and Technique, 80(3), 280–290. https://doi.org/10.1002/jemt.22532 DOI: https://doi.org/10.1002/jemt.22532
Wang, L., Xin, X., Li, P., Dou, J., Han, X., Shen, J., & Yuan, J. (2021). Stepwise immobilization of keratin-dopamine conjugates and gold nanoparticles on PET sheets for potential vascular graft with the catalytic generation of nitric oxide. Colloids and Surfaces B: Biointerfaces, 205, 111855. https://doi.org/10.1016/j.colsurfb.2021.111855 DOI: https://doi.org/10.1016/j.colsurfb.2021.111855
World Health Organization. (2018). WHO methods and data sources for country-level causes of death 2000-2016. World Health Organization, March, 1. http://hdr.undp.org/sites/default/files/hdr2019.pdf
Yan, S., Li, Y., Jiang, Y. C., Xu, Y., Wang, D., Zhang, X., Li, Q., & Turng, L. S. (2021). Expanded polytetrafluoroethylene/silk fibroin/salicin vascular graft fabrication for improved endothelialization and anticoagulation. Applied Surface Science, 542(October 2020), 148610. https://doi.org/10.1016/j.apsusc.2020.148610 DOI: https://doi.org/10.1016/j.apsusc.2020.148610
Yang, P., Huang, N., Leng, Y. X., Yao, Z. Q., Zhou, H. F., Maitz, M., Leng, Y., & Chu, P. K. (2006). Wettability and biocompatibility of nitrogen-doped hydrogenated amorphous carbon films: Effect of nitrogen. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 242(1–2), 22–25. https://doi.org/10.1016/j.nimb.2005.08.081 DOI: https://doi.org/10.1016/j.nimb.2005.08.081
Zia, F., Zia, K. M., Zuber, M., Rehman, S., Tabasum, S., & Sultana, S. (2016). Synthesis and characterization of chitosan/curcumin blends based polyurethanes. International Journal of Biological Macromolecules, 92, 1074–1081. https://doi.org/10.1016/j.ijbiomac.2016.08.005 DOI: https://doi.org/10.1016/j.ijbiomac.2016.08.005
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).