Publicado

2023-06-01

The chronicle of the ups and downs that made Bacillus thuringiensis a natural insecticide

Crónica de los altibajos que hicieron de Bacillus thuringiensis un insecticida natural

Palabras clave:

Bacterial spores, δ-endotoxin, field trials, insect pest (en)
Esporas bacterianas, δ-endotoxina, pruebas de campo, insecto plaga, larvas (es)

Descargas

Autores/as

Bacillus thuringiensis is a worldwide known bacterium for its capacity to control insect pests thanks to the action of its parasporal crystal. The objective of this paper deals with the history, in some cases unknown, of the study of Bacillus thuringiensis that led it to be a crucial biological alternative in controlling pest insects. How the mode of action for killing insects was understood, as well as the field tests that were carried out to evaluate its effectiveness and to develop the first commercial products, are reflected in this review that presents and discusses the scientific successes and failures that marked the course of B. thuringiensis.

Bacillus thuringiensis es una bacteria conocida mundialmente por su capacidad para controlar insectos plaga, gracias a la acción de su cristal parasporal. El objetivo de esta revisión trata de la historia, en algunos casos desconocida, del estudio de Bacillus thuringiensis que la llevó a ser una importante alternativa biológica en el control de insectos plaga. Cómo se llegó a comprender el modo de acción para matar insectos, así como las pruebas de campo que se realizaron para evaluar su efectividad y lograr desarrollar los primeros productos comerciales están plasmados en esta revisión que presenta y discute los aciertos y desaciertos científicos que marcaron el rumbo de B. thuringiensis.

Referencias

Afify A. M., Altahtawy M. M., El-Sawaf S., Habib M. E. & Hammad S. M. 1970. Histopatological effects of Biotrol BTB Process 183, on the third instar larvae of Anagasta kuhniella Zeller. Zeitschrift für Angewandte Entomologie. 65(1-4): 38-48. https://doi.org/https://doi.org/10.1111/j.1439-0418.1970.tb03938.x

Angus T. A. 1956a. Association of toxicity with protein-crystalline inclusions of Bacillus sotto Ishiwata. Canadian Journal of Microbiology 2(2): 122-131. https://doi.org/10.1139/m56-017 %M 13316606

Angus T. A. 1956b. Extraction, purification, and properties of Bacillus sotto toxin. Canadian Journal of Microbiology. 2(4): 416-426. https://doi.org/10.1139/m56-049

Angus T. A. 1956c. General characteristics of certain insect pathogens related to Bacillus cereus. Canadian Journal of Microbiology. 2(2): 111-121. https://doi.org/10.1139/m56-016

Aronson A. I., Beckman W., & Dunn P. 1986. Bacillus thuringiensis and related insect pathogens. Microbiological Reviews. 50(1): 1-24. https://doi.org/10.1128/mr.50.1.1-24.1986

Aronson A. I., Han E. S., McGaughey W., & Johnson D. 1991. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Applied and Environmental Microbiology. 57(4): 981-986. https://doi.org/10.1128/aem.57.4.981-986.1991

Aronson J. N., & Arvidson H. C. 1987. Toxic trypsin digest fragment from the Bacillus thuringiensis parasporal protein. Applied and Environmental Microbiology. 53(2): 416-421. https://doi.org/10.1128/aem.53.2.416-421.1987

Arthurs S., & Dara S. K. 2019. Microbial biopesticides for invertebrate pests and their markets in the United States. Journal of Invertebrate Pathology. 165: 13-21. https://doi.org/https://doi.org/10.1016/j.jip.2018.01.008

Beegle C. C., Couch T. L., Alls R. T., Versoi P. L., & Lee B. L. 1986. Standardization of HD-1-S-1980: U.S. standard for assay of lepidopterous-active Bacillus thuringiensis. Bulletin of the Entomological Society of America. 32(1): 44-45. https://doi.org/10.1093/besa/32.1.44

Berliner E. 1915. Über die Schlaffsucht der Mehlmottenraupe (Ephestia kühniella Zell.) und ihren Erreger Bacillus thuringiensis n. sp. Zeitschrift für Angewandte Entomologie. 2(1): 29-56. https://doi.org/https://doi.org/10.1111/j.1439-0418.1915.tb00334.x

Bonnefoi A., & Barjac H. 1963. Classification des souches du groupe Bacillus thuringiensis par la détermination de l'antigène flagellaire. Entomophaga. 8(3): 223-229. https://doi.org/10.1007/bf02376093

Borgatti A. L., & Guyer G. E. 1962. Formulations of Bacillus thuringiensis Berliner found to be contaminated with chlorinated hydrocarbon insecticides. Journal of Economic Entomology. 55(6): 1015-1016. https://doi.org/10.1093/jee/55.6.1015

Burgerjon A. 1959. Titrage et définition d'une unité biologique pour les préparations de Bacillus thuringiensis Berliner. Entomophaga. 3(IV): 201-206.

Burgerjon A. 1965. Le titrage biologique des cristaux de Bacillus thuringiensis Berliner par réduction de consommation au laboratoire de La Minière. Entomophaga. 10(1): 21-25. https://doi.org/10.1007/bf02378780

Burgerjon A. 1972. Quelques effets physiologiques de la toxine thermostable de Bacillus thuringiensis sur le doryphore Leptinotarsa decemlineata. Entomologia Experimentalis et Applicata. 15(1): 112-127. https://doi.org/https://doi.org/10.1111/j.1570-7458.1972.tb02089.x

Burgerjon A., & de Barjac H. 1960. Nouvelles données sur le róle de la toxine soluble thermostable produite par Bacillus thuringiensis Berliner. Comptes Rendus Des Séances de L'Académie des Sciences. 251: 911-912.

Burgerjon A., & Dulmage H. 1977. Industrial and international standardization of microbial pesticides — I.Bacillus thuringiensis. Entomophaga. 22(2): 121-129. https://doi.org/10.1007/bf02377833

Burgerjon A., & Grison P. 1959. Sensibilité de différents lépidoptères a la souche Anduze de Bacillus thuringiensis Berliner. Entomophaga. 4(3): 207-209. https://doi.org/10.1007/bf02374875

Burges H. D. 1967. Standardization of Bacillus thuringiensis products: homology of the standard. Nature. 215(5101): 664-665. https://doi.org/10.1038/215664a0

Burges H. D., Thomson E. M., & Latchford R. A. 1976. Importance of spores and δ-endotoxin protein crystals of Bacillus thuringiensis in Galleria mellonella. Journal of Invertebrate Pathology. 27(1): 87-94. https://doi.org/https://doi.org/10.1016/0022-2011(76)90032-X

Cooksey K. E. 1968. Purification of a protein from Bacillus thuringiensis toxic to larvae of lepidoptera. Biochemical Journal. 106(2): 445-454. https://doi.org/10.1042/bj1060445

Crickmore N., Zeigler D. R., Feitelson J., Schnepf E., Van Rie J., Lereclus D., Baum J., & Dean D. H. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews. 62(3): 807-813. https://doi.org/doi:10.1128/MMBR.62.3.807-813.1998

de Barjac H. 1979. Note sur la preparation d'une formulation de reference, IPS-78, pour le titrage biologique des formulations experimentales et industrielles du serotype H-14 de Bacillus thuringiensis. World Health Organization. WHO/VBC/79.741

de Barjac H., & Bonnefoi A. 1962. Essai de classification biochimique et sérologique de 24 souches de Bacillus du type B. thuringiensis. Entomophaga. 7(1): 5-31. https://doi.org/10.1007/bf02375988

de Barjac H., & Bonnefoi A. 1968. A classifcation of strains of Bacillus thuringiensis Berliner with a key to their differentiation. Journal of Invertebrate Pathology. 11: 335-347.

de Barjac H., & Burgerjon A. 1972. Standardization of products derived from Bacillus thuringiensis. Microbial Control of Insects, Helsinki.

Drilhon A., & Vago C. (1960). Recherches sur le mecanisme d'action de Bacillus thuringiensis. Antonie van Leeuwenhoek. 26(1): 407-412. https://doi.org/10.1007/bf02539028

Dubois N. R., & Lewis F. B. 1981. What is Bacillus thuringiensis. Journal of Arboriculture. 7(9): 233-240.

Dulmage H. T. 1973. B. thuringiensis U.S. assay standard. Report on the adoption of a primary U.S. reference standard for assay of formulations containing the δ-endotoxin of Bacillus thuringiensis. Bulletin of Entomological Society of America. 19: 200-2002.

Dulmage H. T., Correa J. A., & Martinez A. J. 1970. Coprecipitation with lactose as a means of recovering the spore-crystal complex of Bacillus thuringiensis. Journal of Invertebrate Pathology. 15: 15-20.

Goldberg L. J., & Margalit J. 1977. Bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaemis unguiculata, Culex univitattus, Aedes aegypti and Culex pipiens. Mosquito news. 37: 355-358.

Hall I. M., & Dunn P. H. 1958. Susceptibility of some insect pests to infection by Bacillus thuringiensis Berliner in laboratory tests. Journal of Economic Entomology. 51(3): 296-298. https://doi.org/10.1093/jee/51.3.296

Hannay C. L. 1953. Crystalline inclusions in aerobic sporeforming bacteria. Nature. 172(4387): 1004-1004. https://doi.org/10.1038/1721004a0

Hannay C. L., & Fitz-James P. 1955. The protein crystals of Bacillus thuringiensis Berliner. Canadian Journal of Microbiology. 1(8): 694-710. https://doi.org/10.1139/m55-083

Heimpel A. M. 1967. A critical review of Bacillus thuringiensis var. thuringiensis Berliner and other crystalliferous bacteria. Annual Review of Entomology. 12(1): 287-322. https://doi.org/10.1146/annurev.en.12.010167.001443

Heimpel A. M., & Angus T. A. 1959. The site of action of crystalliferous bacteria in Lepidoptera larvae. Journal of Insect Pathology. 1(2): 152-170.

Heimpel A. M., & Angus T. A. 1960. Bacterial insecticides. Bacteriological Reviews. 24(3): 266-288. https://doi.org/10.1128/br.24.3.266-288.1960

Herfs W. 1965. Zur praktischen Anwendung von „Hoechst 2802 Biospor-Spritzpulver“ (Bacillus thuringiensis) im Obst-und Weinbau sowie an einer Feldhecke. Zeitschrift für Pflanzenkrankheiten (Pflanzenpathologie) und Pflanzenschutz. 72(2): 65-77. http://www.jstor.org/stable/43232723

Hofmann C., & Lüthy P. (1986). Binding and activity of Bacillus thuringiensis delta-endotoxin to invertebrate cells. Archives of Microbiology. 146(1): 7-11. https://doi.org/10.1007/bf00690150

Hofmann C., Vanderbruggen H., Höfte H., Van Rie J., Jansens S., & Van Mellaert H. 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proceedings of the National Academy of Sciences USA. 85(21): 7844-7848.

Höfte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews. 53(2): 242-255. https://doi.org/doi:10.1128/mr.53.2.242-255.1989

Ishiwata S. 1901. On a new type of severe flacherie (sotto disease) (original in Japanese). Dainihon Sansi Kaiho. 114: 1-5.

Ishiwata S. 1905. Concerning "Sotto-Kin" a Bacillus of a disease of the silkworm. Rept. Assoc. Seric. Japan. 160-161.

Jacobs S. E. (1950). Bacteriological control of the flour moth, Ephestia kuehniella Z. Proceedings of the Society for Applied Bacteriology. 13(2): 83-91. https://doi.org/https://doi.org/10.1111/j.1365-2672.1950.tb01974.x

Knowles B. H., & Ellar D. J. 1987. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochimica et Biophysica Acta (BBA) - General Subjects. 924(3): 509-518. https://doi.org/https://doi.org/10.1016/0304-4165(87)90167-X

Kurstak E., & Tijssen P. (1982). Microbial and viral pesticides: mode of action, safety, and future prospects. In E. Kurstak (Ed.). Microbial an viral pesticides. Marcel Dekker, Inc.

Laan P. A., & Wassink H. J. M. 1962. Control of tent caterpillars (Malacosoma neustrium) with Bacillus thuringiensis in the city of Amsterdam. Tijdschrift Over Plantenziekten,.68(2): 143-146. https://doi.org/10.1007/bf01987574

Li L., Chen Z., & Yu Z. 2017. Mass production, application and market development of Bacillus thuringiensis biopesticides in China. In L. M. Fiuza, N. Crickmore, & R. A. Polanczyk (Eds.). Bacillus thuringiensis and Lysinibacillus sphaericus. Characterization and use in the field of biocontrol. Springer

Lüthy P., Cordier J.-L., & Fischer H.-M. 1982. Bacillus thuringiensis as a bacterial insecticide: basic considerations and application. In E. Kurstak (Ed.). Microbial and Viral Pesticides (pp. 720). Marcel Dekker, Inc.

Mattes O. 1927. Parasitare Krankheiten der Mehlmottenlarven und Versuche über ihre Verwendbarkeit als biologisches Bekampfungsmittel. Sitzber. Ges.Befördes. ges. Naturw. 62: 381-417.

McConnell E., & Richards A. G. 1959. The production by Bacillus thuringiensis Berliner of a heat-stable substance toxic for insects. Canadian Journal of Microbiology. 5(2): 161-168. https://doi.org/doi:10.1139/m59-020

Norris J. R. (1970). Sporeformers as insecticides. Journal of Applied Microbiology. 33: 192-206.

Polanczyk R. A., van Frankenhuyzen K., & Pauli G. 2017. The American Bacillus thuringiensis based biopesticide market. In L. M. Fiuza, R. A. Polanczyk, & N. Crickmore (Eds.). Bacillus thuringiensis and Lysinibacillus sphaericus. Springer International Publishing. https://doi.org/DOI 10.1007/978-3-319-56678-8_11

Reardon R. C., Dubois N. R., & McLane W. 1994. Bacillus thuringiensis for managing gypsy moth: a review. In L. M. Fiuza, R. A. Polanczyk, & N. Crickmore (Eds.). Bt and the gypsy moth. USDA Forest Service.

Sacchi V. F., Parenti P., Hanozet G. M., Giordana, B., Lüthy P., & Wolfersberger M. G. (1986). Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. Federation of European Biochemical Societies Letters, 204(2): 213-218. https://doi.org/https://doi.org/10.1016/0014-5793(86)80814-6

Semel M. (1961). The efficiency of a polyhedrosis virus and Bacillus thuringiensis for control of the cabbage looper on cauliflower. Journal of Economic Entomology. 54(4): 698-701.

Steinhaus E. A. 1975. Disease in a Minor Chord. Ohio State University Press.

Steinhause E. 1951. Possible use of Bacillus thuringiensis Berliner as an aid in the biological control of the alfalfa caterpillar. Hilgardia. 20(18): 359-381. https://doi.org/DOI:10.3733/hilg.v20n18p359

Weiser J. 1987. Impact of Bacillus thuringiensis on applied entomology in Eastern Europe and in the Soviet Union. Mitteilungen aus der Biologischen Bundesanstalt fuer Land-und Forstwirtschaft Berlin-Dahlem. 233: 37-49.

Wolfersberger M., Luethy,P., Maurer A., Parenti P., Sacchi F. V., Giordana B., & Hanozet G. M. 1987. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comparative Biochemistry and Physiology Part A: Physiology. 86(2): 301-308. https://doi.org/https://doi.org/10.1016/0300-9629(87)90334-3

Yamvrias C. (1962). Contribution a l'étude du mode d'action de Bacillus thuringiensis Berliner vis-a-vis de la teigne de la farine Anagasta (Ephestia) kühniella Zeller (Lépidoptère). Entomophaga. 7(2): 101-159. https://doi.org/10.1007/bf02374628

Cómo citar

APA

Rosas García, N. M. (2023). The chronicle of the ups and downs that made Bacillus thuringiensis a natural insecticide. Revista Colombiana de Biotecnología, 25(1), 78–91. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/107313

ACM

[1]
Rosas García, N.M. 2023. The chronicle of the ups and downs that made Bacillus thuringiensis a natural insecticide. Revista Colombiana de Biotecnología. 25, 1 (ago. 2023), 78–91.

ACS

(1)
Rosas García, N. M. The chronicle of the ups and downs that made Bacillus thuringiensis a natural insecticide. Rev. colomb. biotecnol. 2023, 25, 78-91.

ABNT

ROSAS GARCÍA, N. M. The chronicle of the ups and downs that made Bacillus thuringiensis a natural insecticide. Revista Colombiana de Biotecnología, [S. l.], v. 25, n. 1, p. 78–91, 2023. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/107313. Acesso em: 27 ene. 2025.

Chicago

Rosas García, Ninfa María. 2023. «The chronicle of the ups and downs that made Bacillus thuringiensis a natural insecticide». Revista Colombiana De Biotecnología 25 (1):78-91. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/107313.

Harvard

Rosas García, N. M. (2023) «The chronicle of the ups and downs that made Bacillus thuringiensis a natural insecticide», Revista Colombiana de Biotecnología, 25(1), pp. 78–91. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/107313 (Accedido: 27 enero 2025).

IEEE

[1]
N. M. Rosas García, «The chronicle of the ups and downs that made Bacillus thuringiensis a natural insecticide», Rev. colomb. biotecnol., vol. 25, n.º 1, pp. 78–91, ago. 2023.

MLA

Rosas García, N. M. «The chronicle of the ups and downs that made Bacillus thuringiensis a natural insecticide». Revista Colombiana de Biotecnología, vol. 25, n.º 1, agosto de 2023, pp. 78-91, https://revistas.unal.edu.co/index.php/biotecnologia/article/view/107313.

Turabian

Rosas García, Ninfa María. «The chronicle of the ups and downs that made Bacillus thuringiensis a natural insecticide». Revista Colombiana de Biotecnología 25, no. 1 (agosto 30, 2023): 78–91. Accedido enero 27, 2025. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/107313.

Vancouver

1.
Rosas García NM. The chronicle of the ups and downs that made Bacillus thuringiensis a natural insecticide. Rev. colomb. biotecnol. [Internet]. 30 de agosto de 2023 [citado 27 de enero de 2025];25(1):78-91. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/107313

Descargar cita

Visitas a la página del resumen del artículo

380

Descargas

Los datos de descargas todavía no están disponibles.