Capacidad de remoción de nutrientes en aguas residuales por porcinaza por Cyanobacterias Colombianas de alta montaña
Removal capacity of nutrients in wastewater from pig farm by high mountain Colombian Cyanobacteria
DOI:
https://doi.org/10.15446/rev.colomb.biote.v26n1.109101Palabras clave:
aguas residuales, biorremediación, Parachlorelle kessleri, porcinaza, Synechoccocales (es)Wastewater, bioremediation, Parachlorelle kessleri, piggery manure, Synechoccocales (en)
Descargas
El uso de microalgas se ha planteado como alternativas prometedoras para el tratamiento de aguas residuales a bajos costos, sumado a la producción de oxígeno y reducción de la huella de carbono se pueden obtener productos de valor agregado en el proceso proveniente de las algas. Se pretende evaluar la remoción de nitratos, fosfatos y materia orgánica disuelta en agua residual sintética por primera vez con cianobacterias de alta montaña de Colombia. Se determinó la capacidad de remoción a nivel de laboratorio con aguas residuales sintéticas y a escala reactor con aguas residuales de porcinaza. Las cianobacterias colombianas dulceacuícolas que se utilizaron corresponden al orden de la Synechoccocales y fueron depositadas en la colección del laboratorio de cultivo de algas de la Universidad Nacional de Colombia bajo los códigos LAUN55, LAUN69 y LAUN71. Se comparó la capacidad de biorremediación de las cianobacterias con los tratamientos tradicionales de las microalgas Parachlorelle kessleri y Desmodesmus sp., obteniendo, a nivel laboratorio, rendimientos en remoción de materia orgánica de 85,4% por LAUN71 alcanzando una DBO final de 15,4 mgO2/L-1, mientras que en el tratamiento con Parachlorelle kessleri se alcanzan porcentajes de remoción de 35,2% y una mayor demanda bioquímica de oxígeno (121,1 mgO2/L-1), así mismo reducciones entre 77% y 89% en ion nitrato y reducción entre 86% y 98% en iones fosfato para las cepas de cianobacterias. A escala reactor de 20 L con aguas residuales de porcinaza, Parachlorelle kessleri presentó remoción del 76%, 75%, 75% y 94% para los parámetros de nitratos, fosfatos, DQO y DBO respectivamente, rendimientos significativamente mayores a LAUN71.
The use of microalgae has been raised as promising alternatives for the treatment of wastewater at low costs, added to the production of oxygen and reduction of the carbon footprint, value-added products can be obtained in the process from algae. It was evaluated the removal of nitrates, phosphates and dissolved organic matter in synthetic and pigsty wastewater for the first time with high mountain cyanobacteria from Colombia. The removal capacity was determined at the laboratory level with synthetic wastewater and at the reactor scale with wastewater from pig farm. The Colombian freshwater cyanobacteria that were used correspond to the order Synechoccocales and were deposited in the collection of the algae culture laboratory of the National University of Colombia under the codes LAUN55, LAUN69 and LAUN71. The bioremediation capacity of the cyanobacteria was compared with the traditional treatments of the microalgae Parachlorelle kessleri and Desmodesmus armatus, obtaining at the laboratory level organic matter removal yields of 85.4% by LAUN71, reaching a final BOD of 15,4 mgO2/L-1, while in the treatment with Parachlorelle kessleri removal percentages of 35.2% and a greater biochemical oxygen demand (121.1 mgO2/L-1) are reached. Reductions between 77% and 89% in ion nitrate and 86% and 98% in phosphate ions for the cyanobacterial strains was obtained. At a 20 L reactor scale with wastewater from pig farm, Parachlorelle kessleri presented removal of 76%, 75%, 75% and 94% for the parameters of nitrates, phosphates, COD and BOD respectively, significantly higher yields than LAUN71.
Referencias
Ahmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587
APHA, AWWA, & WEF. (2017). Standard Methods for the Examination of Water and Wastewater, American Public Health Association. In R. Baird, A. Eaton, & E. Rice (Eds.), APHA (23rd ed.). APHA.
Castrillón, O., Ricardo, Q., Jiménez, A., Oswaldo, P., & Mejía, B. (2004). Porcinaza en la alimentación animal. Revista Lasallista de Investigación, 1(1), 72–76.
Chan, S. S., Khoo, K. S., Chew, K. W., Ling, T. C., & Show, P. L. (2022). Recent advances biodegradation and biosorption of organic compounds from wastewater: Microalgae-bacteria consortium - A review. Bioresource Technology, 344(PA), 126159. https://doi.org/10.1016/j.biortech.2021.126159
Chen, C. Y., Kuo, E. W., Nagarajan, D., Ho, S. H., Dong, C. Di, Lee, D. J., & Chang, J. S. (2020). Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 302(January), 122814. https://doi.org/10.1016/j.biortech.2020.122814
Chen, H. Y., Li, X. K., Meng, L., Liu, G., Ma, X., Piao, C., & Wang, K. (2022). The fate and behavior mechanism of antibiotic resistance genes and microbial communities in anaerobic reactors treating oxytetracycline manufacturing wastewater. Journal of Hazardous Materials, 424(PC), 127352. https://doi.org/10.1016/j.jhazmat.2021.127352
Chen, Z., Shao, S., He, Y., Luo, Q., Zheng, M., Zheng, M., Chen, B., & Wang, M. (2020). Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresource Technology, 302(January), 122806. https://doi.org/10.1016/j.biortech.2020.122806
de-Bashan, L. E., Antoun, H., & Bashan, Y. (2008). INVOLVEMENT OF INDOLE-3-ACETIC ACID PRODUCED BY THE GROWTH-PROMOTING BACTERIUM AZOSPIRILLUM SPP . IN PROMOTING GROWTH OF CHLORELLA VULGARIS 1. Journal of Phycology, 44(4), 938–947. https://doi.org/10.1111/j.1529-8817.2008.00533.x
de Bashan, L. E., & Bashan, Y. (2003). Bacterias promotoras de crecimiento de microalgas: una nueva aproximación en el tratamiento de aguas residuales. Revista Colombiana de Biotecnologia, 5, 85–90.
El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-w
Giraldo, M. (2012). Aislamiento y caracterización de microalgas formadoras de tapetes microbianos asociados a un cultivo hidropónico de plantas halófitas Isolation and Characterization of The Microbial Mats Associated to a Hydroponic Culture of Halophytic Plants. Universidad de Las Palmas de Gran Canaria. http://acceda.ulpgc.es/bitstream/10553/6792/4/0654092_00000_0000.pdf
Githinji, L. J. M., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, and Soil Pollution, 219(1–4), 191–201. https://doi.org/10.1007/s11270-010-0697-1
Gkotsis, P., Peleka, E., & Zouboulis, A. (2020). The use of natural minerals in a pilot-scale MBR for membrane fouling mitigation. Separations, 7(2), 1–13. https://doi.org/10.3390/separations7020024
Guerra-Rodríguez, S., Rodríguez, E., Singh, D. N., & Rodríguez-Chueca, J. (2018). Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A review. Water (Switzerland), 10(12). https://doi.org/10.3390/w10121828
Imase, M., Watanabe, K., Aoyagi, H., & Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella-symbiont association as a model. FEMS Microbiology Ecology, 63(3), 273–282. https://doi.org/10.1111/j.1574-6941.2007.00434.x
Lin, Y., Koutsospyros, A., Braida, W., Christodoulatos, C., Terracciano, A., & Su, T. L. (2022). MicroAlgal Biofilm Reactor (MABR) – Evaluation of Biomass Support Materials and Nitrate Removal Performance. Environmental Processes, 9(2). https://doi.org/10.1007/s40710-022-00574-y
Ministerio de Agricultura. (2018). Cadena cárnica porcina.
Miranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.com
Mousavi, S. A., Sarshad Ghahfarokhi, M., & Soltani Koupaei, S. (2020). Negative impacts of nomadic livestock grazing on common rangelands’ function in soil and water conservation. Ecological Indicators, 110(November 2019), 105946. https://doi.org/10.1016/j.ecolind.2019.105946
Mtaki, K., Kyewalyanga, M. S., & Mtolera, M. S. P. (2021). Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Annals of Microbiology, 71(1). https://doi.org/10.1186/s13213-020-01618-0
Noreña, J., Osorio, N., & Gómez, J. (2016). Manual de Uso de la Porcinaza en la Agricultura (Issue 1). https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004
Nur, M. M. A., & Buma, A. G. J. (2019). Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High Value Compounds. Waste and Biomass Valorization, 10(8), 2079–2097. https://doi.org/10.1007/s12649-018-0256-3
Oberoi, A. S., Surendra, K. C., Wu, D., Lu, H., Wong, J. W. C., & Kumar Khanal, S. (2022). Anaerobic membrane bioreactors for pharmaceutical-laden wastewater treatment: A critical review. Bioresource Technology, 361(May). https://doi.org/10.1016/j.biortech.2022.127667
Park, S., Kim, J., Park, Y., Son, S., Cho, S., Kim, C., & Lee, T. (2017). Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresource Technology, 234, 432–438. https://doi.org/10.1016/j.biortech.2017.03.074
PORKCOLOMBIA. (2017). Análisis de coyuntura del sector porcicultor del año 2017 y perspectivas 2018. Asociación Porkcolombia FONDO NACIONAL DE LA PORCICULTURA, 1–15. https://asociados.porkcolombia.co/porcicultores/images/porcicultores/informes/2016/Inf_Economico_2016.pdf
Qian, Z., Na, L., Bao-Long, W., Tao, Z., Peng-Fei, M., Wei-Xiao, Z., Sraboni, N. Z., Zheng, M., Ying-Qi, Z., & Liu, Y. (2022). Capabilities and mechanisms of microalgae on nutrients and florfenicol removing from marine aquaculture wastewater. Journal of Environmental Management, 320(August). https://doi.org/10.1016/j.jenvman.2022.115673
Rengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064.
Sepehri, A., Sarrafzadeh, M. H., & Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164
Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590
Su, Y., Mennerich, A., & Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45(11), 3351–3358. https://doi.org/10.1016/j.watres.2011.03.046
Suárez-Martínez, D., Angulo-Mercado, E., Mercado-Martínez, I., Vacca-Jimeno, V., Tapia-Larios, C., & Cubillán, N. (2022). Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass. ACS Omega, 7(16), 14128–14137. https://doi.org/10.1021/acsomega.2c00696
Suraraksa, B., Nopharatana, A., Chaiprasert, P., Bhumiratana, S., & Tanticharoen, M. (2017). Effect of Substrate Feeding Concentration on Initial Biofilm Development in Anaerobic Hybrid Reactor. ASEAN Journal on Science and Technology for Development, 20(3&4), 361–372. https://doi.org/10.29037/ajstd.357
Torres-Valenzuela, L. S., Sanín-Villarrea, A., Arango-Ramírez, A., & Serna-Jiménez, J. A. (2019). Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. Revista ION, 32(2), 59–66. https://doi.org/10.18273/revion.v32n2-2019006
Wang, Y., Wang, S., Sun, L., Sun, Z., & Li, D. (2020). Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification. Algal Research, 47(October 2019), 101840. https://doi.org/10.1016/j.algal.2020.101840
Wang, Z., Chu, Y., Chang, H., Xie, P., Zhang, C., Li, F., & Ho, S. H. (2022). Advanced insights on removal of antibiotics by microalgae-bacteria consortia: A state-of-the-art review and emerging prospects. Chemosphere, 307(P4), 136117. https://doi.org/10.1016/j.chemosphere.2022.136117
Watanabe, K., Takihana, N., Aoyagi, H., Hanada, S., Watanabe, Y., Ohmura, N., Saiki, H., & Tanaka, H. (2005). Symbiotic association in Chlorella culture. FEMS Microbiology Ecology, 51(2), 187–196. https://doi.org/10.1016/j.femsec.2004.08.004
Zhang, H., Chen, X., Song, L., Liu, S., & Li, P. (2022). The mechanism by which Enteromorpha Linza polysaccharide promotes Bacillus subtilis growth and nitrate removal. International Journal of Biological Macromolecules, 209(PA), 840–849. https://doi.org/10.1016/j.ijbiomac.2022.04.082
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).