Efecto del nitrato de plata en el cultivo in vitro de Anthurium magnificum Linden
Trichoderma spp., an alternative for sustainable agriculture: a review
DOI:
https://doi.org/10.15446/rev.colomb.biote.v25n2.110056Palabras clave:
Araceae, cultivo de tejidos, planta ornamental (es)Araceae, ornamental plant, tissue culture (en)
Descargas
En la actualidad uno de los retos a los que se enfrentan los agricultores es producir alimentos bajo las inclemencias climáticas. Para el 2050, se estima un aumento en la demanda en producción de alimentos básicos a causa del incremento demográfico, aumentando con ello el detrimento de los recursos naturales. Dentro de las alternativas biológicas está el uso de insumos a base de microorganismos benéficos, como el género Trichoderma. Los cuales se han utilizado en los campos agrícolas para el control biológico contra un gran número de fitopatógenos. Sin embargo, aún son poco conocidas otras propiedades benéficas de este género para las plantas que coloniza y el ecosistema. Se realizó una búsqueda de artículos científicos en Academic Search Ultimate, BioOne, Acsess, Esmerald, Fuente Académica, ScienceDirect y Springer, entre 2015 y 2023, con dos excepciones de años anteriores. Se utilizó la palabra clave “Trichoderma” y aquellas relacionadas con interacciones microbianas y su aplicación agrícola. Esta revisión resume los hallazgos bibliográficos actuales de este género que muestran su alta capacidad hacia el desarrollo sostenible de los agroecosistemas. Varias investigaciones reportan su capacidad de inducir la defensa vegetal, la promoción del crecimiento y desarrollo radicular, así como la estimulación y síntesis de sustancias que contribuyen a fortalecer la fertilidad del suelo. Con ello mejora los rendimientos de los cultivos a los que se encuentra asociado. En definitiva, la aplicación de Trichoderma puede coadyuvar a disminuir los efectos negativos ocasionados por el uso de agroquímicos y fertilizantes sintéticos, contribuyendo a una producción más sostenible.
Currently, one of the most critical challenges facing farmers is the production of food under adverse weather conditions. By 2050, an increase in the production of staple foods is estimated due to demographics, thereby increasing the depletion of natural resources. Among the biological alternatives is the use of inputs based on beneficial microorganisms such as the Trichoderma genus, which have been used in agricultural fields for biological control against a large number of phytopathogens. However, other beneficial properties of this genus for the plants it colonizes, and the ecosystem are still little known. Therefore, a search for scientific articles was carried out in Academic Search Ultimate, BioOne, Acsess, Esmerald, Fuente Academic, ScienceDirect and Springer, between 2015 and 2023, with two exceptions from previous years. The keyword “Trichoderma” was used and those related to microbial interactions and their agricultural application. Therefore, this review summarizes the current bibliographic findings of this genus, that shows its high capacity towards the sustainable development of agroecosystems. Several investigations report its ability to induce plant defense, promote growth and root development, and stimulate and synthesize substances that help strengthen soil fertility. This improves the yields of the crops to which they are associated. With this, the application of Trichoderma can reduce the negative effects caused by the use of agrochemicals and synthetic fertilizers, contributing to a more sustainable production.
Referencias
Al Ramadan, R., Karas, M., Ranušová, P., & Moravčíková, J. (2021). Effect of silver nitrate on in vitro regeneration and antioxidant responses of oilseed rape cultivars (Brassica napus L.). Journal of microbiology, biotechnology and food sciences, 10(6), e4494-e4494. https://doi.org/10.15414/jmbfs.4494 DOI: https://doi.org/10.15414/jmbfs.4494
Anantasaran, J., & Kanchanapoom, K. (2008). Influence of medium formula and silver nitrate on in vitro plant regeneration of Zinnia cultivars. Songklanakarin Journal of Science and Technology, 30(1), 1-6.
Apelbaum, A., Goldlust, A., & Icekson, I. (1985). Control by ethylene of arginine decarboxylase activity in pea seedlings and its implication for hormonal regulation of plant growth. Plant Physiology, 79(3), 635-640. https://doi.org/10.1104/pp.79.3.635 DOI: https://doi.org/10.1104/pp.79.3.635
Asgher, M., Khan, M. I. R., Anjum, N. A., Verma, S., Vyas, D., Per, T. S., Masood, A., & Khan, N. A. (2018). Ethylene and polyamines in counteracting heavy metal phytotoxicity: a crosstalk perspective. Journal of Plant Growth Regulation, 37, 1050-1065. https://doi.org/10.1007/s00344-018-9823-x DOI: https://doi.org/10.1007/s00344-018-9823-x
Bandyopadhyay, T. K., Bhattacharya, C., Roy, S., Raha, P., Khatua, I., Saha, G., & Chakraborty, A. (2022). Somatic Embryogenesis of Anthurium andraeanum Linden., -A Tropical Florists Plant. En: Ramírez-Mosqueda, M.A. (Ed). Somatic Embryogenesis. Methods in Molecular Biology, vol 2527. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2485-2_13 DOI: https://doi.org/10.1007/978-1-0716-2485-2_13
Bashir, M. A., Silvestri, C., Salimonti, A., Rugini, E., Cristofori, V., & Zelasco, S. (2022). Can Ethylene Inhibitors Enhance the Success of Olive Somatic Embryogenesis?. Plants, 11(168), 3-10. https://doi.org/10.3390/plants11020168 DOI: https://doi.org/10.3390/plants11020168
Bezerra, P., Portugal, A. C., Campos, C. H., Rodrigues, C., & Guimarães, A. (2019). Induction of somatic embryogenesis in two cultivars of Anthurium analysed by scanning electron microscopy. Revista Agro@mbiente On-line, 13(0), 1-13. https://doi.org/10.18227/1982-8470ragro.v13i0.5333 DOI: https://doi.org/10.18227/1982-8470ragro.v13i0.5333
Cardoso, J. C. (2019). Silver nitrate enhances in vitro development and quality of shoots of Anthurium andraeanum. Scientia Horticulturae, 253, 358-363. https://doi.org/10.1016/j.scienta.2019.04.054 DOI: https://doi.org/10.1016/j.scienta.2019.04.054
Croat, T. B. (1983). A revision of the genus Anthurium (Araceae) of Mexico and Central America. Part I: Mexico and middle America. Annals of the Missouri Botanical Garden, 70(2), 211-416. DOI: https://doi.org/10.2307/2399049
Croat, T. B., & Sheffer, R. D. (1983). The Sectional Groupings of Anthurium (Araceae). Aroideana, 6(3), 85-123.
de Alcantara, A. L., do Tanque, P. R., dos Santos, A., & de Macêdo, A. C. (2019). Toxicological and anatomical study of vegetative organs of Anthurium maricense Nadruz and Mayo (Araceae). Revista Agrogeoambiental, 11(2), 87-106. https://doi.org/10.18406/2316-1817v11n220191289 DOI: https://doi.org/10.18406/2316-1817v11n220191289
de Morais, É. B., de Castro, A. C. R., de Souza Aragão, F. A., Silva, T. F., da Silva, J. P., & Soares, N. S. (2017). Evaluation of potential use of native Anthurium foliage. Ornamental Horticulture, 23(1), 07-14. DOI: https://doi.org/10.14295/oh.v23i1.949
El-Ashry, A. A. E., Gabr, A. M. M., Girgis, N. D., & El-Bahr, M. K. (2018). Influence of silver nitrate on enhancing in vitro rooting of Gardenia jasminoides Ellis. Journal of Environmental Science and Technology, 11(5), 238-245. DOI: https://doi.org/10.3923/jest.2018.238.245
Gantait, S., & Mandal, N. (2010). Tissue culture of Anthurium andraeanum: a significant review and future prospective. International Journal of Botany, 6(3), 207-219. DOI: https://doi.org/10.3923/ijb.2010.207.219
Ha, N. T. M., Manh Do, C., Hoang, T. T., Ngo, N. D., Van Bui, L., & Nhut, D. T. (2020). The effect of cobalt and silver nanoparticles on overcoming leaf abscission and enhanced growth of rose (Rosa hybrida L. ‘Baby Love’) plantlets cultured in vitro. Plant Cell, Tissue and Organ Culture, 141, 393-405. http://doi.org/10.1007/s11240-020-01796-4 DOI: https://doi.org/10.1007/s11240-020-01796-4
Haque, M., Siddique, A. B., & Islam, S. S. (2015). Effect of silver nitrate and amino acids on high frequency plants regeneration in barley (Hordeum vulgare L.). Plant Tissue Culture and Biotechnology, 25(1), 37-50. DOI: https://doi.org/10.3329/ptcb.v25i1.24124
Huang, Y. L., Yuan, S. C., & Chen, F. C. (2020). Establishment of an efficient micropropagation system in Anthurium hybrids through in vitro callogenesis and suspension culture. The Horticulture Journal Preview, 89(1), 54-60. https://doi.org/10.2503/hortj.UTD-112 DOI: https://doi.org/10.2503/hortj.UTD-112
Isah, T., Qurratul., & Umar, S. (2022). Infuence of silver nitrate and copper sulphate on somatic embryogenesis, shoot morphogenesis, multiplication and associated physiological biochemical changes in Gladiolus hybridus L. Plant Cell, Tissue and Organ Culture, 149, 563-587. https://doi.org/10.1007/s11240-022-02309-1 DOI: https://doi.org/10.1007/s11240-022-02309-1
Jahan, M. T., Islam, M. R., Khan, R., Mamun, A. N. K., Ahmed, G., & Hakim, L. (2009). In vitro clonal propagation of anthurium (Anthurium andraeanum L.) using callus culture. Plant Tissue Culture and Biotechnology, 19(1), 61-69. DOI: https://doi.org/10.3329/ptcb.v19i1.4961
Kumar, P. P., Lakshmanan, P., & Thorpe, T. A. (1998). Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cellular & Developmental Biology-Plant, 34, 94-103. https://doi.org/10.1007/BF02822771 DOI: https://doi.org/10.1007/BF02822771
Kumar, V., Parvatam, G., & Aswathanarayana, G. (2009). AgNO3- a potential regulator of ethylene activity and plant growth modulator. Electronic Journal of Biotechnology, 12(2), 1-15. https://doi.org/10.2225/vol12-issue2-fulltext-1 DOI: https://doi.org/10.2225/vol12-issue2-fulltext-1
Kumar, G., Sivakumar, S., Siva, G., Vigneswaran, M., Senthil Kumar, T., & Jayabalan, N. (2016). Silver nitrate promotes high-frequency multiple shoot regeneration in cotton (Gossypium hirsutum L.) by inhibiting ethylene production and phenolic secretion. In Vitro Cellular & Developmental Biology-Plant, 52, 408-418. https://doi.org/10.1007/s11627-016-9782-5 DOI: https://doi.org/10.1007/s11627-016-9782-5
Li, S., Li, J., Li, X., Guan, Y., Chen, M., & Zhu, J. (2021). Comparative transcriptome analysis reveals molecular regulators underlying pluripotent cell induction and callus formation in Anthurium andraeanum ‘Alabama’. In Vitro Cellular & Developmental Biology-Plant, 57, 235-247. https://doi.org/10.1007/s11627-020-10138-0 DOI: https://doi.org/10.1007/s11627-020-10138-0
Martínez-Estrada, E., Islas-Luna, B., Pérez-Sato, J. A., & Bello-Bello, J. J. (2019). Temporary immersion improves in vitro multiplication and acclimatization of Anthurium andreanum Lind. Scientia Horticulturae, 249, 185-191. https://doi.org/10.1016/j.scienta.2019.01.053 DOI: https://doi.org/10.1016/j.scienta.2019.01.053
Maurya, R. L., Kumar, M., Sirohi, U., Priya., Chaudhary, V., Sharma, V. R., Datta, S. K., & Yadav, M. K. (2022). An effective micropropagation protocol and determination of the clonal fidelity of in vitro developed microshoots of carnation (Dianthus caryophyllus L.) using SSR markers. Nucleus, 65, 49-55. https://doi.org/10.1007/s13237-021-00362-3 DOI: https://doi.org/10.1007/s13237-021-00362-3
McDaniel, B. K., & Binder, B. M. (2012). Ethylene receptor 1 (ETR1) is sufficient and has the predominant role in mediating inhibition of ethylene responses by silver in Arabidopsis thaliana. Journal of Biological Chemistry, 287(31), 26094-26103. https://doi.org/10.1074/jbc.M112.383034 DOI: https://doi.org/10.1074/jbc.M112.383034
Moshkov, I. E., Novikova, G. V., Hall, M. A., & George, E. F. (2008). Plant growth regulators III: gibberellins, ethylene, abscisic acid, their analogues and inhibitors; miscellaneous compounds. En: George E. F., Hall M. A., & de Klerk G. J. (Eds). Plant propagation by tissue culture, 3rd edn, pp. 239-281. Springer, The Netherlands. ISBN:978-1-4020-5005-3
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Pal, B. H., & Ravishankar, G. A. (2002). Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell, Tissue and Organ Culture, 69, 1-34. https://doi.org/10.1023/A:1015064227278 DOI: https://doi.org/10.1023/A:1015064227278
Ruck, H. C., & Bolas, B. D. (1955). Studies in the comparative physiology of apple rootstocks. I. The effect of nitrogen on the growth and assimilation of Malling Apple Rootstocks. Ann. Bot. N.S., 20, 57-58. DOI: https://doi.org/10.1093/oxfordjournals.aob.a083515
Sakai, H., Hua, J., Chen, Q. G., Chang, C., Medrano, L. J., Bleecker, A. B., & Meyerowitz, E. M. (1998). ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 95(10), 5812-5817. https://doi.org/10.1073/pnas.95.10.5812 DOI: https://doi.org/10.1073/pnas.95.10.5812
Samiei, L., Davoudi Pahnehkolayi, M., Tehranifar, A., & Karimian, Z. (2021). Organic and inorganic elicitors enhance in vitro regeneration of Rosa canina. Journal of Genetic Engineering and Biotechnology, 19, 1-7. DOI: https://doi.org/10.1186/s43141-021-00166-7
Schaller, G. E., & Bleecker, A. B. (1995). Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science, 270(5243), 1809-1811. https://doi.org/10.1126/science.270.5243.1809 DOI: https://doi.org/10.1126/science.270.5243.1809
Srisamoot, N., & Padsri, I. (2018). Assessing genetic diversity of some Anthurium andraeanum Hort. cut-flower cultivars using ISSR markers. Genomics and Genetics, 11(1), 1-8. https://doi.org/10.14456/gag.2018.1
Tadesse, M., Lommen, W. J. M., & Struik, P. C. (2000). Effects of in vitro treatments on leaf area growth of potato transplants during acclimatisation. Plant Cell, Tissue and Organ Culture, 61, 59-67. https://doi.org/10.1023/A:1006442420153 DOI: https://doi.org/10.1023/A:1006442420153
Tahoori, F., Majd, A., Nejadsattari, T., Ofoghi, H., & Iranbakhsh, A. (2018). Effects of silver nitrate (AgNO3) on growth and anatomical structure of vegetative organs of liquorice (Glycyrrhiza glabra L.) under in vitro condition. Plant Omics, 11(3), 153-160. DOI: https://doi.org/10.21475/poj.11.03.18.p1548
Tamimi, S. M. (2015). Effects of ethylene inhibitors, silver nitrate (AgNO3), cobalt chloride (CoCl2) and aminooxyacetic acid (AOA), on in vitro shoot induction and rooting of banana (Musa acuminata L.). African Journal of Biotechnology, 14(32), 2511-2516. https://doi.org/10.5897/AJB2015.14788 DOI: https://doi.org/10.5897/AJB2015.14788
Thi, K., Myo, N., Yadanar, M., Myat, A., Thein, W., & Amy, N. (2019). In vitro Propagation of Anthurium andraeanum Linn. (White) via Indirect Organogenesis through the Use of Leaf Lamina and Petiole Explants. Journal of Scientific and Innovative Research, 8(3), 78-82. DOI: https://doi.org/10.31254/jsir.2019.8302
Tung, H.T., Suong, P.T., Khai, H.D. Luan, V. Q., Cuong, D. M., Hien, V. T., Nam, N. B., Ngan, H. T. M., Bien, L. T., Phong, T. H., & Nhut, D. T. (2022). Protocorm-like body formation, stem elongation, and enhanced growth of Anthurium andraeanum ‘Tropical’ plantlet on medium containing silver nanoparticles. In Vitro Cellular & Developmental Biology-Plant, 58, 70-79. https://doi.org/10.1007/s11627-021-10217-w DOI: https://doi.org/10.1007/s11627-021-10217-w
Wang, K. L. C., Li, H., & Ecker, J. R. (2002). Ethylene biosynthesis and signaling networks. The plant cell, 14(1), 131-151. https://doi.org/10.1105/tpc.001768 DOI: https://doi.org/10.1105/tpc.001768
Wang, G., Xu, C., Yan, S., & Xu, B. (2019). An Efficient Somatic Embryo Liquid Culture System for Potential Use in Large-Scale and Synchronic Production of Anthurium andraeanum Seedlings. Frontiers in Plant Science, 10, 29. https://doi.org/10.3389/fpls.2019.00029 DOI: https://doi.org/10.3389/fpls.2019.00029
Wang, S., Wu, B. D., Wei, M., Zhou, J. W., Jiang, K., & Wang, C. Y. (2020). Silver nanoparticles with different concentrations and particle sizes affect the functional traits of wheat. Biol Plantarum, 64, 1-8. https://doi.org/10.32615/bp.2019.122 DOI: https://doi.org/10.32615/bp.2019.122
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).