Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia
Evaluación de factores de virulencia en asilados clínicos de E. coli patogénica en muestras aviares en Caloto, Colombia
DOI:
https://doi.org/10.15446/rev.colomb.biote.v25n2.110727Palabras clave:
APEC, Pathogenesis, Molecular characterization, Chickens, Colibacillosis (en)APEC, Patogénesis, Caracterización molecular, Pollos, Colibacilosis (es)
Descargas
Avian pathogenic E. coli (APEC), produces an extraintestinal infection in chickens, turkeys, and other types of birds, called colibacillosis, which is considered one of the main causes of economic losses due to morbidity, mortality, and discard of poultry carcasses. The objective of the present study was to characterize the genetic profile of the virulence factors of different isolates of avian E. coli in Caloto, Cauca, Colombia. Materials and methods: E. coli was isolated and identified by biochemical tests, from 47 clinical isolates. Subsequently, the DNA was extracted using Chelex. Three multiplex PCRs were designed to amplify 13 virulence factors (iroN, hlyF, iss, iutA, frz, vat, sitA, KpsM, sitD, fimH, pstB, sopB, and uvrY), using primers previously reported for each. At the end, the amplification products were verified on agarose gels. Each isolate was classified according to the number of virulence factors: group A (between 10 and 13), group B (between 5 and 9), and group C (4 or less). Discussion and Conclusions: we were able to identify the presence of a group of virulence factors in clinical isolates of APEC, which allows us to demonstrate that both the frequency and the profile of virulence factors in the isolated strains showed a different profile than the reported by other authors. The virulence genes pstB and fimH were detected in all our samples, and the iss gene was the one with the lowest frequency. Finally, according to the number of virulence factors, the group A was the most frequent.
La E. coli patógena aviar (APEC), produce una infección extraintestinal en pollos, pavos y otros tipos de aves, denominada colibacilosis, la cual es considerada una de las principales causas de pérdidas económicas por morbilidad, mortalidad y descarte de canales de aves. El objetivo del presente estudio fue caracterizar el perfil genético de los factores de virulencia de diferentes aislamientos de E. coli aviar en Caloto, Cauca, Colombia. Materiales y métodos: E. coli se aisló e identificó mediante pruebas bioquímicas, a partir de 47 aislamientos clínicos. Posteriormente, el ADN se extrajo utilizando Chelex. Se diseñaron tres PCR multiplex para amplificar 13 factores de virulencia (iroN, hlyF, iss, iutA, frz, vat, sitA, KpsM, sitD, fimH, pstB, sopB y uvrY), utilizando primers informados previamente para cada uno. Al final, los productos de amplificación fueron verificados en geles de agarosa. Cada aislamiento se clasificó según el número de factores de virulencia: grupo A (entre 10 y 13), grupo B (entre 5 y 9) y grupo C (4 o menos). Discusión y Conclusiones: pudimos identificar la presencia de un grupo de factores de virulencia en los aislados clínicos de APEC, lo que nos permite demostrar que tanto la frecuencia como el perfil de los factores de virulencia en las cepas aisladas presentaron un perfil diferente al reportado por otros autores. Los genes de virulencia pstB y fimH se detectaron en todas nuestras muestras, siendo el gen iss el de menor frecuencia. Finalmente, según el número de factores de virulencia, el grupo A fue el más frecuente.
Referencias
Barbieri, N. L., Pimenta, R. L., de Melo, D. A., Nolan, L. K., de Souza, M. M. S., & Logue, C. M. (2021). Mcr-1 Identified in Fecal Escherichia coli and Avian Pathogenic E. coli (APEC) From Brazil. Frontiers in Microbiology, 12, 659613. https://doi.org/10.3389/fmicb.2021.659613 DOI: https://doi.org/10.3389/fmicb.2021.659613
Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences, 115(25), 6506–6511. https://doi.org/10.1073/pnas.1711842115 DOI: https://doi.org/10.1073/pnas.1711842115
Bäumler, A. J., Norris, T. L., Lasco, T., Voigt, W., Reissbrodt, R., Rabsch, W., & Heffron, F. (1998). IroN, a Novel Outer Membrane Siderophore Receptor Characteristic of Salmonella enterica. Journal of Bacteriology, 180(6), Article 6. https://doi.org/10.1128/jb.180.6.1446-1453.1998 DOI: https://doi.org/10.1128/JB.180.6.1446-1453.1998
Ben Salem, R., Abbassi, M. S., García, V., García-Fierro, R., Fernández, J., Kilani, H., Jaouani, I., Khayeche, M., Messadi, L., & Rodicio, M. R. (2017). Antimicrobial drug resistance and genetic properties of Salmonella enterica serotype Enteritidis circulating in chicken farms in Tunisia. Journal of Infection and Public Health, 10(6), 855–860. https://doi.org/10.1016/j.jiph.2017.01.012 DOI: https://doi.org/10.1016/j.jiph.2017.01.012
Berg, E. S., Wester, A. L., Ahrenfeldt, J., Mo, S. S., Slettemeås, J. S., Steinbakk, M., Samuelsen, Ø., Grude, N., Simonsen, G. S., Løhr, I. H., Jørgensen, S. B., Tofteland, S., Lund, O., Dahle, U. R., & Sunde, M. (2017). Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/blaCMY-2 resistance plasmids. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 23(6), 407.e9-407.e15. https://doi.org/10.1016/j.cmi.2016.12.035 DOI: https://doi.org/10.1016/j.cmi.2016.12.035
Borzi, M. M., Cardozo, M. V., Oliveira, E. S. de, Pollo, A. de S., Guastalli, E. A. L., Santos, L. F. dos, & Ávila, F. A. de. (2018). Characterization of avian pathogenic Escherichia coli isolated from free-range helmeted guineafowl. Brazilian Journal of Microbiology, 49, 107–112. https://doi.org/10.1016/j.bjm.2018.04.011 DOI: https://doi.org/10.1016/j.bjm.2018.04.011
Castellanos, L. R., Donado-Godoy, P., León, M., Clavijo, V., Arevalo, A., Bernal, J. F., Timmerman, A. J., Mevius, D. J., Wagenaar, J. A., & Hordijk, J. (2017). High Heterogeneity of Escherichia coli Sequence Types Harbouring ESBL/AmpC Genes on IncI1 Plasmids in the Colombian Poultry Chain. PloS One, 12(1), e0170777. https://doi.org/10.1371/journal.pone.0170777 DOI: https://doi.org/10.1371/journal.pone.0170777
De Carli, S., Ikuta, N., Lehmann, F. K. M., da Silveira, V. P., de Melo Predebon, G., Fonseca, A. S. K., & Lunge, V. R. (2015). Virulence gene content in Escherichia coli isolates from poultry flocks with clinical signs of colibacillosis in Brazil. Poultry Science, 94(11), Article 11. https://doi.org/10.3382/ps/pev256 DOI: https://doi.org/10.3382/ps/pev256
del Río, E., Panizo-Morán, M., Prieto, M., Alonso-Calleja, C., & Capita, R. (2007). Effect of various chemical decontamination treatments on natural microflora and sensory characteristics of poultry. International Journal of Food Microbiology, 115(3), 268–280. https://doi.org/10.1016/j.ijfoodmicro.2006.10.048 DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.10.048
Delicato, E. R., de Brito, B. G., Gaziri, L. C. J., & Vidotto, M. C. (2003). Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis. Veterinary Microbiology, 94(2), 97–103. https://doi.org/10.1016/s0378-1135(03)00076-2 DOI: https://doi.org/10.1016/S0378-1135(03)00076-2
Derakhshandeh, A., Zahraei Salehi, T., Tadjbakhsh, H., & Karimi, V. (2009). Identification, cloning and sequencing of Escherichia coli strain χ1378 (O78:K80) iss gene isolated from poultry colibacillosis in Iran. Letters in Applied Microbiology, 49(3), Article 3. https://doi.org/10.1111/j.1472-765X.2009.02681.x DOI: https://doi.org/10.1111/j.1472-765X.2009.02681.x
Dissanayake, D. R. A., Octavia, S., & Lan, R. (2014). Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in Sri Lanka. Veterinary Microbiology, 168(2–4), 403–412. https://doi.org/10.1016/j.vetmic.2013.11.028 DOI: https://doi.org/10.1016/j.vetmic.2013.11.028
Donado-Godoy, P., Castellanos, R., León, M., Arevalo, A., Clavijo, V., Bernal, J., León, D., Tafur, M. A., Byrne, B. A., Smith, W. A., & Perez-Gutierrez, E. (2015). The Establishment of the Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS): A Pilot Project on Poultry Farms, Slaughterhouses and Retail Market. Zoonoses and Public Health, 62 Suppl 1, 58–69. https://doi.org/10.1111/zph.12192 DOI: https://doi.org/10.1111/zph.12192
Dozois, C. M., Daigle, F., & Curtiss, R. (2003). Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proceedings of the National Academy of Sciences, 100(1), Article 1. https://doi.org/10.1073/pnas.232686799 DOI: https://doi.org/10.1073/pnas.232686799
Dube, N., & Mbanga, J. (2018). Molecular characterization and antibiotic resistance patterns of avian fecal Escherichia coli from turkeys, geese, and ducks. Veterinary World, 11(6), 859–867. https://doi.org/10.14202/vetworld.2018.859-867 DOI: https://doi.org/10.14202/vetworld.2018.859-867
Dziva, F., & Stevens, M. P. (2008). Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathology: Journal of the W.V.P.A, 37(4), 355–366. https://doi.org/10.1080/03079450802216652 DOI: https://doi.org/10.1080/03079450802216652
El-Shaer, S., Abdel-Rhman, S. H., Barwa, R., & Hassan, R. (2018). Virulence Characteristics, Serotyping and Phylogenetic Typing of Clinical and Environmental Escherichia coli Isolates. Jundishapur Journal of Microbiology, 11(12), Article 12. https://doi.org/10.5812/jjm.82835 DOI: https://doi.org/10.5812/jjm.82835
Ewers, C., Janßen, T., Kießling, S., Philipp, H.-C., & Wieler, L. H. (2005). Rapid Detection of Virulence-Associated Genes in Avian Pathogenic Escherichia coli by Multiplex Polymerase Chain Reaction. Avian Diseases, 49(2), Article 2. https://doi.org/10.1637/7293-102604R DOI: https://doi.org/10.1637/7293-102604R
Feldmann, F., Sorsa, L. J., Hildinger, K., & Schubert, S. (2007). The Salmochelin Siderophore Receptor IroN Contributes to Invasion of Urothelial Cells by Extraintestinal Pathogenic Escherichia coli In Vitro. Infection and Immunity, 75(6), 3183–3187. https://doi.org/10.1128/IAI.00656-06 DOI: https://doi.org/10.1128/IAI.00656-06
FENAVI. (2021). Produccion Nacional Huevo y Pollo. Departamento Nacional de Estadística- DANE.
Gao, J., Duan, X., Li, X., Cao, H., Wang, Y., & Zheng, S. J. (2018). Emerging of a highly pathogenic and multi-drug resistant strain of Escherichia coli causing an outbreak of colibacillosis in chickens. Infection, Genetics and Evolution, 65, 392–398. https://doi.org/10.1016/j.meegid.2018.08.026 DOI: https://doi.org/10.1016/j.meegid.2018.08.026
Goudarztalejerdi, A., Mohammadzadeh, A., Najafi, S. V., Nargesi, F., & Joudari, S. (2020). Serogrouping, phylotyping, and virulence genotyping of commensal and avian pathogenic Escherichia coli isolated from broilers in Hamedan, Iran. Comparative Immunology, Microbiology and Infectious Diseases, 73, 101558. https://doi.org/10.1016/j.cimid.2020.101558 DOI: https://doi.org/10.1016/j.cimid.2020.101558
Guabiraba, R., & Schouler, C. (2015). Avian colibacillosis: Still many black holes. FEMS Microbiology Letters, 362(15), Article 15. https://doi.org/10.1093/femsle/fnv118 DOI: https://doi.org/10.1093/femsle/fnv118
Hazam, P. K., Goyal, R., & Ramakrishnan, V. (2019). Peptide based antimicrobials: Design strategies and therapeutic potential. Progress in Biophysics and Molecular Biology, 142, 10–22. https://doi.org/10.1016/j.pbiomolbio.2018.08.006 DOI: https://doi.org/10.1016/j.pbiomolbio.2018.08.006
Herren, C. D., Mitra, A., Palaniyandi, S. K., Coleman, A., Elankumaran, S., & Mukhopadhyay, S. (2006). The BarA-UvrY Two-Component System Regulates Virulence in Avian Pathogenic Escherichia coli O78:K80:H9. Infection and Immunity, 74(8), 4900–4909. https://doi.org/10.1128/IAI.00412-06 DOI: https://doi.org/10.1128/IAI.00412-06
Ibrahim, R. A., Cryer, T. L., Lafi, S. Q., Basha, E.-A., Good, L., & Tarazi, Y. H. (2019). Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Veterinary Research, 15(1), 159. https://doi.org/10.1186/s12917-019-1901-1 DOI: https://doi.org/10.1186/s12917-019-1901-1
Jeong, J., Bae, S.-Y., & Choi, J. (2021). Identification of toxicity pathway of diesel particulate matter using AOP of PPARγ inactivation leading to pulmonary fibrosis. Environment International, 147. Scopus. https://doi.org/10.1016/j.envint.2020.106339 DOI: https://doi.org/10.1016/j.envint.2020.106339
Jeong, Y.-W., Kim, T.-E., Kim, J.-H., & Kwon, H.-J. (2012). Pathotyping avian pathogenic Escherichia coli strains in Korea. Journal of Veterinary Science, 13(2), 145–152. https://doi.org/10.4142/jvs.2012.13.2.145 DOI: https://doi.org/10.4142/jvs.2012.13.2.145
Johar, A., Al-Thani, N., Al-Hadidi, S. H., Dlissi, E., Mahmoud, M. H., & Eltai, N. O. (2021). Antibiotic Resistance and Virulence Gene Patterns Associated with Avian Pathogenic Escherichia coli (APEC) from Broiler Chickens in Qatar. Antibiotics, 10(5), Article 5. https://doi.org/10.3390/antibiotics10050564 DOI: https://doi.org/10.3390/antibiotics10050564
Johnson, T. J., Wannemuehler, Y., Doetkott, C., Johnson, S. J., Rosenberger, S. C., & Nolan, L. K. (2008). Identification of Minimal Predictors of Avian Pathogenic Escherichia coli Virulence for Use as a Rapid Diagnostic Tool. Journal of Clinical Microbiology, 46(12), Article 12. https://doi.org/10.1128/jcm.00816-08 DOI: https://doi.org/10.1128/JCM.00816-08
Kabiswa, W., Nanteza, A., Tumwine, G., & Majalija, S. (2018). Phylogenetic Groups and Antimicrobial Susceptibility Patterns of Escherichia coli from Healthy Chicken in Eastern and Central Uganda. Journal of Veterinary Medicine, 2018, 9126467. https://doi.org/10.1155/2018/9126467 DOI: https://doi.org/10.1155/2018/9126467
Kaper, J. B., Nataro, J. P., & Mobley, H. L. T. (2004). Pathogenic Escherichia coli. Nature Reviews Microbiology, 2(2), Article 2. https://doi.org/10.1038/nrmicro818 DOI: https://doi.org/10.1038/nrmicro818
Karacan Sever, N., & Akan, M. (2019). Molecular analysis of virulence genes of Salmonella Infantis isolated from chickens and turkeys. Microbial Pathogenesis, 126, 199–204. https://doi.org/10.1016/j.micpath.2018.11.006 DOI: https://doi.org/10.1016/j.micpath.2018.11.006
Kemmett, K., Humphrey, T., Rushton, S., Close, A., Wigley, P., & Williams, N. J. (2013). A longitudinal study simultaneously exploring the carriage of APEC virulence associated genes and the molecular epidemiology of faecal and systemic E. coli in commercial broiler chickens. PloS One, 8(6), e67749. https://doi.org/10.1371/journal.pone.0067749 DOI: https://doi.org/10.1371/journal.pone.0067749
Kim, J.-S., & Kim, Y. (2007). The inhibitory effect of natural bioactives on the growth of pathogenic bacteria. Nutrition Research and Practice, 1(4), 273–278. https://doi.org/10.4162/nrp.2007.1.4.273 DOI: https://doi.org/10.4162/nrp.2007.1.4.273
Kim, Y. B., Yoon, M. Y., Ha, J. S., Seo, K. W., Noh, E. B., Son, S. H., & Lee, Y. J. (2020). Molecular characterization of avian pathogenic Escherichia coli from broiler chickens with colibacillosis. Poultry Science, 99(2), 1088–1095. https://doi.org/10.1016/j.psj.2019.10.047 DOI: https://doi.org/10.1016/j.psj.2019.10.047
Kwon, S.-G., Cha, S.-Y., Choi, E.-J., Kim, B., Song, H.-J., & Jang, H.-K. (2008). Epidemiological Prevalence of Avian Pathogenic Escherichia coli Differentiated by Multiplex PCR from Commercial Chickens and Hatchery in Korea. Journal of Bacteriology and Virology, 38. https://doi.org/10.4167/jbv.2008.38.4.179 DOI: https://doi.org/10.4167/jbv.2008.38.4.179
Lamarche, M. G., Dozois, C. M., Daigle, F., Caza, M., Curtiss, R., Dubreuil, J. D., & Harel, J. (2005). Inactivation of the Pst System Reduces the Virulence of an Avian Pathogenic Escherichia coli O78 Strain. Infection and Immunity, 73(7), Article 7. https://doi.org/10.1128/iai.73.7.4138-4145.2005 DOI: https://doi.org/10.1128/IAI.73.7.4138-4145.2005
Li, Ewers, Laturnus, Diehl, Alt, Dai, Anta ̃o, Schnetz, & Wieler, L. H. (2008). Characterization of a yjjQ mutant of avian pathogenic Escherichia coli (APEC) | Microbiology Society. https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.2007/015784-0?crawler=true DOI: https://doi.org/10.1099/mic.0.2007/015784-0
Lutful Kabir, S. M. (2010). Avian Colibacillosis and Salmonellosis: A Closer Look at Epidemiology, Pathogenesis, Diagnosis, Control and Public Health Concerns. International Journal of Environmental Research and Public Health, 7(1), 89–114. https://doi.org/10.3390/ijerph7010089 DOI: https://doi.org/10.3390/ijerph7010089
Lynne, A. M., Foley, S. L., & Nolan, L. K. (2006). Immune response to recombinant Escherichia coli Iss protein in poultry. Avian Diseases, 50(2), 273–276. https://doi.org/10.1637/7441-092105R.1 DOI: https://doi.org/10.1637/7441-092105R.1
Mageiros, L., Méric, G., Bayliss, S. C., Pensar, J., Pascoe, B., Mourkas, E., Calland, J. K., Yahara, K., Murray, S., Wilkinson, T. S., Williams, L. K., Hitchings, M. D., Porter, J., Kemmett, K., Feil, E. J., Jolley, K. A., Williams, N. J., Corander, J., & Sheppard, S. K. (2021). Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nature Communications, 12(1), Article 1. https://doi.org/10.1038/s41467-021-20988-w DOI: https://doi.org/10.1038/s41467-021-20988-w
Marazzato, M., Aleandri, M., Massaro, M. R., Vitanza, L., Conte, A. L., Conte, M. P., Nicoletti, M., Comanducci, A., Goldoni, P., Maurizi, L., Zagaglia, C., & Longhi, C. (2020). Escherichia coli strains of chicken and human origin: Characterization of antibiotic and heavy-metal resistance profiles, phylogenetic grouping, and presence of virulence genetic markers. Research in Veterinary Science, 132, 150–155. https://doi.org/10.1016/j.rvsc.2020.06.012 DOI: https://doi.org/10.1016/j.rvsc.2020.06.012
Mbanga, J., & Nyararai, Y. O. (2015). Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe. The Onderstepoort Journal of Veterinary Research, 82(1), e1–e8. https://doi.org/10.4102/ojvr.v82i1.850 DOI: https://doi.org/10.4102/ojvr.v82i1.850
Meena, P. R., Yadav, P., Hemlata, H., Tejavath, K. K., & Singh, A. P. (2021). Poultry-origin extraintestinal Escherichia coli strains carrying the traits associated with urinary tract infection, sepsis, meningitis and avian colibacillosis in India. Journal of Applied Microbiology, 130(6), 2087–2101. https://doi.org/10.1111/jam.14905 DOI: https://doi.org/10.1111/jam.14905
Mellata, M., Dho-Moulin, M., Dozois, C. M., Curtiss, R., Brown, P. K., Arné, P., Brée, A., Desautels, C., & Fairbrother, J. M. (2003). Role of Virulence Factors in Resistance of Avian Pathogenic Escherichia coli to Serum and in Pathogenicity. Infection and Immunity, 71(1), Article 1. https://doi.org/10.1128/iai.71.1.536-540.2003 DOI: https://doi.org/10.1128/IAI.71.1.536-540.2003
Mitchell, N. M., Johnson, J. R., Johnston, B., Curtiss, R., & Mellata, M. (2015). Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs. Applied and Environmental Microbiology, 81(3), 1177–1187. https://doi.org/10.1128/AEM.03524-14 DOI: https://doi.org/10.1128/AEM.03524-14
Moriel, D. G., Bertoldi, I., Spagnuolo, A., Marchi, S., Rosini, R., Nesta, B., Pastorello, I., Corea, V. A. M., Torricelli, G., Cartocci, E., Savino, S., Scarselli, M., Dobrindt, U., Hacker, J., Tettelin, H., Tallon, L. J., Sullivan, S., Wieler, L. H., Ewers, C., … Serino, L. (2010). Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9072–9077. https://doi.org/10.1073/pnas.0915077107 DOI: https://doi.org/10.1073/pnas.0915077107
Murase, K., Martin, P., Porcheron, G., Houle, S., Helloin, E., Pénary, M., Nougayrède, J.-P., Dozois, C. M., Hayashi, T., & Oswald, E. (2016). HlyF Produced by Extraintestinal Pathogenic Escherichia coli Is a Virulence Factor That Regulates Outer Membrane Vesicle Biogenesis. The Journal of Infectious Diseases, 213(5), 856–865. https://doi.org/10.1093/infdis/jiv506 DOI: https://doi.org/10.1093/infdis/jiv506
Nadimpalli, M., Vuthy, Y., de Lauzanne, A., Fabre, L., Criscuolo, A., Gouali, M., Huynh, B.-T., Naas, T., Phe, T., Borand, L., Jacobs, J., Kerléguer, A., Piola, P., Guillemot, D., Le Hello, S., & Delarocque-Astagneau, E. (2019). Meat and Fish as Sources of Extended-Spectrum β-Lactamase–Producing Escherichia coli, Cambodia. Emerging Infectious Diseases, 25(1), 126–131. https://doi.org/10.3201/eid2501.180534 DOI: https://doi.org/10.3201/eid2501.180534
Nolan, L. K., Giddings, C. W., Horne, S. M., Doetkott, C., Gibbs, P. S., Wooley, R. E., & Foley, S. L. (2002). Complement resistance, as determined by viable count and flow cytometric methods, and its association with the presence of iss and the virulence of avian Escherichia coli. Avian Diseases, 46(2), 386–392. https://doi.org/10.1637/0005-2086(2002)046[0386:CRADBV]2.0.CO;2 DOI: https://doi.org/10.1637/0005-2086(2002)046[0386:CRADBV]2.0.CO;2
Paixão, A. C., Ferreira, A. C., Fontes, M., Themudo, P., Albuquerque, T., Soares, M. C., Fevereiro, M., Martins, L., & de Sá, M. I. C. (2016). Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates. Poultry Science, 95(7), Article 7. https://doi.org/10.3382/ps/pew087 DOI: https://doi.org/10.3382/ps/pew087
Parreira, V. R., & Gyles, C. L. (2003). A Novel Pathogenicity Island Integrated Adjacent to the thrW tRNA Gene of Avian Pathogenic Escherichia coli Encodes a Vacuolating Autotransporter Toxin. Infection and Immunity, 71(9), Article 9. https://doi.org/10.1128/iai.71.9.5087-5096.2003 DOI: https://doi.org/10.1128/IAI.71.9.5087-5096.2003
Pavelka, M. S., Wright, L. F., & Silver, R. P. (1991). Identification of two genes, kpsM and kpsT, in region 3 of the polysialic acid gene cluster of Escherichia coli K1. Journal of Bacteriology, 173(15), Article 15. https://doi.org/10.1128/jb.173.15.4603-4610.1991 DOI: https://doi.org/10.1128/jb.173.15.4603-4610.1991
Rahayuningtyas, I., Indrawati, A., Wibawan, I. W. T., Palupi, M. F., & Istiyaningsih, I. (2020). Phylogenetic group determination and plasmid virulence gene profiles of colistin-resistant Escherichia coli originated from the broiler meat supply chain in Bogor, Indonesia. Veterinary World, 13(9), 1807–1814. https://doi.org/10.14202/vetworld.2020.1807-1814 DOI: https://doi.org/10.14202/vetworld.2020.1807-1814
Ramírez-Hernández, A., Varón-García, A., & Sánchez-Plata, M. X. (2017). Microbiological Profile of Three Commercial Poultry Processing Plants in Colombia. Journal of Food Protection, 80(12), 1980–1986. https://doi.org/10.4315/0362-028X.JFP-17-028 DOI: https://doi.org/10.4315/0362-028X.JFP-17-028
Ren, X., Li, M., Xu, C., Cui, K., Feng, Z., Fu, Y., Zhang, J., & Liao, M. (2016). Prevalence and molecular characterization of Salmonella enterica isolates throughout an integrated broiler supply chain in China. Epidemiology and Infection, 144(14), 2989–2999. https://doi.org/10.1017/S0950268816001515 DOI: https://doi.org/10.1017/S0950268816001515
Rodriguez-Siek, K., Giddings, C., Doetkott, C., Johnson, T., Fakhr, M., & Nolan, L. (2005). Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology (Reading, England), 151, 2097–2110. https://doi.org/10.1099/mic.0.27499-0 DOI: https://doi.org/10.1099/mic.0.27499-0
Rouquet, G., Porcheron, G., Barra, C., Répérant, M., Chanteloup, N. K., Schouler, C., & Gilot, P. (2009). A Metabolic Operon in Extraintestinal Pathogenic Escherichia coli Promotes Fitness under Stressful Conditions and Invasion of Eukaryotic Cells. Journal of Bacteriology, 191(13), 4427–4440. https://doi.org/10.1128/JB.00103-09 DOI: https://doi.org/10.1128/JB.00103-09
Runyen-Janecky, L. J., Reeves, S. A., Gonzales, E. G., & Payne, S. M. (2003). Contribution of the Shigella flexneri Sit, Iuc, and Feo Iron Acquisition Systems to Iron Acquisition In Vitro and in Cultured Cells. Infection and Immunity, 71(4), 1919–1928. https://doi.org/10.1128/IAI.71.4.1919-1928.2003 DOI: https://doi.org/10.1128/IAI.71.4.1919-1928.2003
Sabri, M., Caza, M., Proulx, J., Lymberopoulos, M. H., Brée, A., Moulin-Schouleur, M., Curtiss, R., & Dozois, C. M. (2008). Contribution of the SitABCD, MntH, and FeoB metal transporters to the virulence of avian pathogenic Escherichia coli O78 strain chi7122. Infection and Immunity, 76(2), 601–611. https://doi.org/10.1128/IAI.00789-07 DOI: https://doi.org/10.1128/IAI.00789-07
Sadeghi Bonjar, M. S., Salari, S., Jahantigh, M., & Rashki, A. (2017). Frequency of iss and irp2 genes by PCR method in Escherichia coli isolated from poultry with colibacillosis in comparison with healthy chicken in poultry farms of Zabol, South East of Iran. Polish Journal of Veterinary Sciences, 20(2), 363–367. https://doi.org/10.1515/pjvs-2017-0044 DOI: https://doi.org/10.1515/pjvs-2017-0044
Schouler, C., Schaeffer, B., Brée, A., Mora, A., Dahbi, G., Biet, F., Oswald, E., Mainil, J., Blanco, J., & Moulin-Schouleur, M. (2012). Diagnostic strategy for identifying avian pathogenic Escherichia coli based on four patterns of virulence genes. Journal of Clinical Microbiology, 50(5), 1673–1678. https://doi.org/10.1128/JCM.05057-11
Schouler, C., Schaeffer, B., Brée, A., Mora, A., Dahbi, G., Biet, F., Oswald, E., Mainil, J., Blanco, J., & Moulin-Schouleur, M. (2020). Diagnostic Strategy for Identifying Avian Pathogenic Escherichia coli Based on Four Patterns of Virulence Genes. Journal of Clinical Microbiology, 50(5), Article 5. https://doi.org/10.1128/jcm.05057-11 DOI: https://doi.org/10.1128/JCM.05057-11
Silveira, F., Maluta, R. P., Tiba, M. R., de Paiva, J. B., Guastalli, E. a. L., & da Silveira, W. D. (2016). Comparison between avian pathogenic (APEC) and avian faecal (AFEC) Escherichia coli isolated from different regions in Brazil. Veterinary Journal (London, England: 1997), 217, 65–67. https://doi.org/10.1016/j.tvjl.2016.06.007 DOI: https://doi.org/10.1016/j.tvjl.2016.06.007
Solà-Ginés, M., Cameron-Veas, K., Badiola, I., Dolz, R., Majó, N., Dahbi, G., Viso, S., Mora, A., Blanco, J., Piedra-Carrasco, N., González-López, J. J., & Migura-Garcia, L. (2015). Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain. PloS One, 10(11), e0143191. https://doi.org/10.1371/journal.pone.0143191 DOI: https://doi.org/10.1371/journal.pone.0143191
Song, Y., Yu, L., Zhang, Y., Dai, Y., Wang, P., Feng, C., Liu, M., Sun, S., Xie, Z., & Wang, F. (2020). Prevalence and characteristics of multidrug-resistant mcr-1-positive Escherichia coli isolates from broiler chickens in Tai’an, China. Poultry Science, 99(2), Article 2. https://doi.org/10.1016/j.psj.2019.10.044 DOI: https://doi.org/10.1016/j.psj.2019.10.044
Stromberg, Z. R., Johnson, J. R., Fairbrother, J. M., Kilbourne, J., Van Goor, A., Curtiss, R., & Mellata, M. (2017). Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health. PloS One, 12(7), e0180599. https://doi.org/10.1371/journal.pone.0180599 DOI: https://doi.org/10.1371/journal.pone.0180599
Subedi, Luitel, Devkota, Bhattarai, Phuyal, Panthi, Shrestha, & Chaudhary. (2021). Antibiotic resistance pattern and virulence genes in avian pathogenic Escherichia coli (APEC) from different breeding systems | Veterinaria Italiana. https://www.veterinariaitaliana.izs.it/index.php/VetIt/article/view/1617
Subedi, M., Luitel, H., Devkota, B., Bhattarai, R. K., Phuyal, S., Panthi, P., Shrestha, A., & Chaudhary, D. K. (2018). Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Veterinary Research, 14(1), 113. https://doi.org/10.1186/s12917-018-1442-z DOI: https://doi.org/10.1186/s12917-018-1442-z
Tello, A., Austin, B., & Telfer, T. C. (2012). Selective Pressure of Antibiotic Pollution on Bacteria of Importance to Public Health. Environmental Health Perspectives, 120(8), 1100–1106. https://doi.org/10.1289/ehp.1104650 DOI: https://doi.org/10.1289/ehp.1104650
Timothy, S., Shafi, K., Leatherbarrow, A. H., Jordan, F. T. W., & Wigley, P. (2008). Molecular epidemiology of a reproductive tract-associated colibacillosis outbreak in a layer breeder flock associated with atypical avian pathogenic Escherichia coli. Avian Pathology: Journal of the W.V.P.A, 37(4), 375–378. https://doi.org/10.1080/03079450802216579 DOI: https://doi.org/10.1080/03079450802216579
Tuntufye, H. N., Ons, E., Pham, A. D. N., Luyten, T., Van Gerven, N., Bleyen, N., & Goddeeris, B. M. (2012). Escherichia coli ghosts or live E. coli expressing the ferri-siderophore receptors FepA, FhuE, IroN and IutA do not protect broiler chickens against avian pathogenic E. coli (APEC). Veterinary Microbiology, 159(3), Article 3. https://doi.org/10.1016/j.vetmic.2012.04.037 DOI: https://doi.org/10.1016/j.vetmic.2012.04.037
Umair, M., Mohsin, M., Ali, Q., Qamar, M. U., Raza, S., Ali, A., Guenther, S., & Schierack, P. (2019). Prevalence and Genetic Relatedness of Extended Spectrum-β-Lactamase-Producing Escherichia coli Among Humans, Cattle, and Poultry in Pakistan. Microbial Drug Resistance (Larchmont, N.Y.), 25(9), 1374–1381. https://doi.org/10.1089/mdr.2018.0450 DOI: https://doi.org/10.1089/mdr.2018.0450
van der Westhuizen, W. A., & Bragg, R. R. (2012). Multiplex polymerase chain reaction for screening avian pathogenic Escherichia coli for virulence genes. Avian Pathology: Journal of the W.V.P.A, 41(1), 33–40. https://doi.org/10.1080/03079457.2011.631982 DOI: https://doi.org/10.1080/03079457.2011.631982
Varga, C., Brash, M. L., Slavic, D., Boerlin, P., Ouckama, R., Weis, A., Petrik, M., Philippe, C., Barham, M., & Guerin, M. T. (2018). Evaluating Virulence-Associated Genes and Antimicrobial Resistance of Avian Pathogenic Escherichia coli Isolates from Broiler and Broiler Breeder Chickens in Ontario, Canada. Avian Diseases, 62(3), 291–299. https://doi.org/10.1637/11834-032818-Reg.1 DOI: https://doi.org/10.1637/11834-032818-Reg.1
Wang, G., Clark, C. G., & Rodgers, F. G. (2002). Detection in Escherichia coli of the Genes Encoding the Major Virulence Factors, the Genes Defining the O157:H7 Serotype, and Components of the Type 2 Shiga Toxin Family by Multiplex PCR. Journal of Clinical Microbiology, 40(10), Article 10. https://doi.org/10.1128/jcm.40.10.3613-3619.2002 DOI: https://doi.org/10.1128/JCM.40.10.3613-3619.2002
Xu, W.-Y., Li, Y.-J., & Fan, C. (2018). Different loci and mRNA copy number of the increased serum survival gene of Escherichia coli. Canadian Journal of Microbiology, 64(2), 147–154. https://doi.org/10.1139/cjm-2017-0363 DOI: https://doi.org/10.1139/cjm-2017-0363
Zhuge, X., Jiang, M., Tang, F., Sun, Y., Ji, Y., Xue, F., Ren, J., Zhu, W., & Dai, J. (2019). Avian-source mcr-1-positive Escherichia coli is phylogenetically diverse and shares virulence characteristics with E. coli causing human extra-intestinal infections. Veterinary Microbiology, 239, 108483. https://doi.org/10.1016/j.vetmic.2019.108483 DOI: https://doi.org/10.1016/j.vetmic.2019.108483
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).