Publicado

2023-12-01

Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia

Evaluación de factores de virulencia en asilados clínicos de E. coli patogénica en muestras aviares en Caloto, Colombia

DOI:

https://doi.org/10.15446/rev.colomb.biote.v25n2.110727

Palabras clave:

APEC, Pathogenesis, Molecular characterization, Chickens, Colibacillosis (en)
APEC, Patogénesis, Caracterización molecular, Pollos, Colibacilosis (es)

Descargas

Autores/as

  • Harold Eduardo Durango Galv´an Alura Animal Health and Nutrition, Bogotá, Colombia https://orcid.org/0009-0009-0857-8687
  • Hernando Morales López Grupo de investigación BIOTECH MOLECULAR. Línea de biología molecular, genética y computacional. Antioquia, Medellín, Colombia https://orcid.org/0009-0009-2214-7306
  • Enderson Murillo Ramos Grupo de investigación Programa de Estudio y Control de Enfermedades Tropicales (PECET). Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia. Laboratorio Integrado de Medicina Especializada (LIME). Facultad de Medicina. Universidad de Antioquia, Medellín, Colombia https://orcid.org/0000-0001-6790-976X
  • Jonny Andrés Yepes-Blandón PISCÍCOLA SAN SILVESTRE S.A https://orcid.org/0000-0001-6276-5488
  • Omer Campo Nieto Grupo Genética Molecular (GENMOL). Facultad de Medicina. Universidad de Antioquia, Medellín, Colombia https://orcid.org/0000-0002-5577-2724
  • Kelly Natalia Quiroz Torres Grupo de investigación BIOTECH MOLECULAR. Línea de biología molecular, genética y computacional. Antioquia, Medellín, Colombia. https://orcid.org/0009-0004-6064-3507
  • Laura Catalina Echeverri Tirado Grupo de investigación BIOTECH MOLECULAR. Línea de biología molecular, genética y computacional. Antioquia, Medellín, Colombia. https://orcid.org/0000-0002-7648-1125
  • Rafael Guillermo Villarreal Julio Grupo de investigación BIOTECH MOLECULAR. Línea de biología molecular, genética y computacional. Antioquia, Medellín, Colombia; Grupo de investigación Programa de Estudio y Control de Enfermedades Tropicales (PECET). Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Escuela de Graduados, Doctorado Ciencias de la Salud, Universidad CES, Medellín, Colombia https://orcid.org/0000-0002-9009-1086

Avian pathogenic E. coli (APEC), produces an extraintestinal infection in chickens, turkeys, and other types of birds, called colibacillosis, which is considered one of the main causes of economic losses due to morbidity, mortality, and discard of poultry carcasses. The objective of the present study was to characterize the genetic profile of the virulence factors of different isolates of avian E. coli in Caloto, Cauca, Colombia. Materials and methods: E. coli was isolated and identified by biochemical tests, from 47 clinical isolates. Subsequently, the DNA was extracted using Chelex. Three multiplex PCRs were designed to amplify 13 virulence factors (iroN, hlyF, iss, iutA, frz, vat, sitA, KpsM, sitD, fimH, pstB, sopB, and uvrY), using primers previously reported for each. At the end, the amplification products were verified on agarose gels. Each isolate was classified according to the number of virulence factors: group A (between 10 and 13), group B (between 5 and 9), and group C (4 or less). Discussion and Conclusions: we were able to identify the presence of a group of virulence factors in clinical isolates of APEC, which allows us to demonstrate that both the frequency and the profile of virulence factors in the isolated strains showed a different profile than the reported by other authors. The virulence genes pstB and fimH were detected in all our samples, and the iss gene was the one with the lowest frequency. Finally, according to the number of virulence factors, the group A was the most frequent.

La E. coli patógena aviar (APEC), produce una infección extraintestinal en pollos, pavos y otros tipos de aves, denominada colibacilosis, la cual es considerada una de las principales causas de pérdidas económicas por morbilidad, mortalidad y descarte de canales de aves. El objetivo del presente estudio fue caracterizar el perfil genético de los factores de virulencia de diferentes aislamientos de E. coli aviar en Caloto, Cauca, Colombia. Materiales y métodos: E. coli se aisló e identificó mediante pruebas bioquímicas, a partir de 47 aislamientos clínicos. Posteriormente, el ADN se extrajo utilizando Chelex. Se diseñaron tres PCR multiplex para amplificar 13 factores de virulencia (iroN, hlyF, iss, iutA, frz, vat, sitA, KpsM, sitD, fimH, pstB, sopB y uvrY), utilizando primers informados previamente para cada uno. Al final, los productos de amplificación fueron verificados en geles de agarosa. Cada aislamiento se clasificó según el número de factores de virulencia: grupo A (entre 10 y 13), grupo B (entre 5 y 9) y grupo C (4 o menos). Discusión y Conclusiones: pudimos identificar la presencia de un grupo de factores de virulencia en los aislados clínicos de APEC, lo que nos permite demostrar que tanto la frecuencia como el perfil de los factores de virulencia en las cepas aisladas presentaron un perfil diferente al reportado por otros autores. Los genes de virulencia pstB y fimH se detectaron en todas nuestras muestras, siendo el gen iss el de menor frecuencia. Finalmente, según el número de factores de virulencia, el grupo A fue el más frecuente.

Referencias

Barbieri, N. L., Pimenta, R. L., de Melo, D. A., Nolan, L. K., de Souza, M. M. S., & Logue, C. M. (2021). Mcr-1 Identified in Fecal Escherichia coli and Avian Pathogenic E. coli (APEC) From Brazil. Frontiers in Microbiology, 12, 659613. https://doi.org/10.3389/fmicb.2021.659613 DOI: https://doi.org/10.3389/fmicb.2021.659613

Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences, 115(25), 6506–6511. https://doi.org/10.1073/pnas.1711842115 DOI: https://doi.org/10.1073/pnas.1711842115

Bäumler, A. J., Norris, T. L., Lasco, T., Voigt, W., Reissbrodt, R., Rabsch, W., & Heffron, F. (1998). IroN, a Novel Outer Membrane Siderophore Receptor Characteristic of Salmonella enterica. Journal of Bacteriology, 180(6), Article 6. https://doi.org/10.1128/jb.180.6.1446-1453.1998 DOI: https://doi.org/10.1128/JB.180.6.1446-1453.1998

Ben Salem, R., Abbassi, M. S., García, V., García-Fierro, R., Fernández, J., Kilani, H., Jaouani, I., Khayeche, M., Messadi, L., & Rodicio, M. R. (2017). Antimicrobial drug resistance and genetic properties of Salmonella enterica serotype Enteritidis circulating in chicken farms in Tunisia. Journal of Infection and Public Health, 10(6), 855–860. https://doi.org/10.1016/j.jiph.2017.01.012 DOI: https://doi.org/10.1016/j.jiph.2017.01.012

Berg, E. S., Wester, A. L., Ahrenfeldt, J., Mo, S. S., Slettemeås, J. S., Steinbakk, M., Samuelsen, Ø., Grude, N., Simonsen, G. S., Løhr, I. H., Jørgensen, S. B., Tofteland, S., Lund, O., Dahle, U. R., & Sunde, M. (2017). Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/blaCMY-2 resistance plasmids. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 23(6), 407.e9-407.e15. https://doi.org/10.1016/j.cmi.2016.12.035 DOI: https://doi.org/10.1016/j.cmi.2016.12.035

Borzi, M. M., Cardozo, M. V., Oliveira, E. S. de, Pollo, A. de S., Guastalli, E. A. L., Santos, L. F. dos, & Ávila, F. A. de. (2018). Characterization of avian pathogenic Escherichia coli isolated from free-range helmeted guineafowl. Brazilian Journal of Microbiology, 49, 107–112. https://doi.org/10.1016/j.bjm.2018.04.011 DOI: https://doi.org/10.1016/j.bjm.2018.04.011

Castellanos, L. R., Donado-Godoy, P., León, M., Clavijo, V., Arevalo, A., Bernal, J. F., Timmerman, A. J., Mevius, D. J., Wagenaar, J. A., & Hordijk, J. (2017). High Heterogeneity of Escherichia coli Sequence Types Harbouring ESBL/AmpC Genes on IncI1 Plasmids in the Colombian Poultry Chain. PloS One, 12(1), e0170777. https://doi.org/10.1371/journal.pone.0170777 DOI: https://doi.org/10.1371/journal.pone.0170777

De Carli, S., Ikuta, N., Lehmann, F. K. M., da Silveira, V. P., de Melo Predebon, G., Fonseca, A. S. K., & Lunge, V. R. (2015). Virulence gene content in Escherichia coli isolates from poultry flocks with clinical signs of colibacillosis in Brazil. Poultry Science, 94(11), Article 11. https://doi.org/10.3382/ps/pev256 DOI: https://doi.org/10.3382/ps/pev256

del Río, E., Panizo-Morán, M., Prieto, M., Alonso-Calleja, C., & Capita, R. (2007). Effect of various chemical decontamination treatments on natural microflora and sensory characteristics of poultry. International Journal of Food Microbiology, 115(3), 268–280. https://doi.org/10.1016/j.ijfoodmicro.2006.10.048 DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.10.048

Delicato, E. R., de Brito, B. G., Gaziri, L. C. J., & Vidotto, M. C. (2003). Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis. Veterinary Microbiology, 94(2), 97–103. https://doi.org/10.1016/s0378-1135(03)00076-2 DOI: https://doi.org/10.1016/S0378-1135(03)00076-2

Derakhshandeh, A., Zahraei Salehi, T., Tadjbakhsh, H., & Karimi, V. (2009). Identification, cloning and sequencing of Escherichia coli strain χ1378 (O78:K80) iss gene isolated from poultry colibacillosis in Iran. Letters in Applied Microbiology, 49(3), Article 3. https://doi.org/10.1111/j.1472-765X.2009.02681.x DOI: https://doi.org/10.1111/j.1472-765X.2009.02681.x

Dissanayake, D. R. A., Octavia, S., & Lan, R. (2014). Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in Sri Lanka. Veterinary Microbiology, 168(2–4), 403–412. https://doi.org/10.1016/j.vetmic.2013.11.028 DOI: https://doi.org/10.1016/j.vetmic.2013.11.028

Donado-Godoy, P., Castellanos, R., León, M., Arevalo, A., Clavijo, V., Bernal, J., León, D., Tafur, M. A., Byrne, B. A., Smith, W. A., & Perez-Gutierrez, E. (2015). The Establishment of the Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS): A Pilot Project on Poultry Farms, Slaughterhouses and Retail Market. Zoonoses and Public Health, 62 Suppl 1, 58–69. https://doi.org/10.1111/zph.12192 DOI: https://doi.org/10.1111/zph.12192

Dozois, C. M., Daigle, F., & Curtiss, R. (2003). Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proceedings of the National Academy of Sciences, 100(1), Article 1. https://doi.org/10.1073/pnas.232686799 DOI: https://doi.org/10.1073/pnas.232686799

Dube, N., & Mbanga, J. (2018). Molecular characterization and antibiotic resistance patterns of avian fecal Escherichia coli from turkeys, geese, and ducks. Veterinary World, 11(6), 859–867. https://doi.org/10.14202/vetworld.2018.859-867 DOI: https://doi.org/10.14202/vetworld.2018.859-867

Dziva, F., & Stevens, M. P. (2008). Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathology: Journal of the W.V.P.A, 37(4), 355–366. https://doi.org/10.1080/03079450802216652 DOI: https://doi.org/10.1080/03079450802216652

El-Shaer, S., Abdel-Rhman, S. H., Barwa, R., & Hassan, R. (2018). Virulence Characteristics, Serotyping and Phylogenetic Typing of Clinical and Environmental Escherichia coli Isolates. Jundishapur Journal of Microbiology, 11(12), Article 12. https://doi.org/10.5812/jjm.82835 DOI: https://doi.org/10.5812/jjm.82835

Ewers, C., Janßen, T., Kießling, S., Philipp, H.-C., & Wieler, L. H. (2005). Rapid Detection of Virulence-Associated Genes in Avian Pathogenic Escherichia coli by Multiplex Polymerase Chain Reaction. Avian Diseases, 49(2), Article 2. https://doi.org/10.1637/7293-102604R DOI: https://doi.org/10.1637/7293-102604R

Feldmann, F., Sorsa, L. J., Hildinger, K., & Schubert, S. (2007). The Salmochelin Siderophore Receptor IroN Contributes to Invasion of Urothelial Cells by Extraintestinal Pathogenic Escherichia coli In Vitro. Infection and Immunity, 75(6), 3183–3187. https://doi.org/10.1128/IAI.00656-06 DOI: https://doi.org/10.1128/IAI.00656-06

FENAVI. (2021). Produccion Nacional Huevo y Pollo. Departamento Nacional de Estadística- DANE.

Gao, J., Duan, X., Li, X., Cao, H., Wang, Y., & Zheng, S. J. (2018). Emerging of a highly pathogenic and multi-drug resistant strain of Escherichia coli causing an outbreak of colibacillosis in chickens. Infection, Genetics and Evolution, 65, 392–398. https://doi.org/10.1016/j.meegid.2018.08.026 DOI: https://doi.org/10.1016/j.meegid.2018.08.026

Goudarztalejerdi, A., Mohammadzadeh, A., Najafi, S. V., Nargesi, F., & Joudari, S. (2020). Serogrouping, phylotyping, and virulence genotyping of commensal and avian pathogenic Escherichia coli isolated from broilers in Hamedan, Iran. Comparative Immunology, Microbiology and Infectious Diseases, 73, 101558. https://doi.org/10.1016/j.cimid.2020.101558 DOI: https://doi.org/10.1016/j.cimid.2020.101558

Guabiraba, R., & Schouler, C. (2015). Avian colibacillosis: Still many black holes. FEMS Microbiology Letters, 362(15), Article 15. https://doi.org/10.1093/femsle/fnv118 DOI: https://doi.org/10.1093/femsle/fnv118

Hazam, P. K., Goyal, R., & Ramakrishnan, V. (2019). Peptide based antimicrobials: Design strategies and therapeutic potential. Progress in Biophysics and Molecular Biology, 142, 10–22. https://doi.org/10.1016/j.pbiomolbio.2018.08.006 DOI: https://doi.org/10.1016/j.pbiomolbio.2018.08.006

Herren, C. D., Mitra, A., Palaniyandi, S. K., Coleman, A., Elankumaran, S., & Mukhopadhyay, S. (2006). The BarA-UvrY Two-Component System Regulates Virulence in Avian Pathogenic Escherichia coli O78:K80:H9. Infection and Immunity, 74(8), 4900–4909. https://doi.org/10.1128/IAI.00412-06 DOI: https://doi.org/10.1128/IAI.00412-06

Ibrahim, R. A., Cryer, T. L., Lafi, S. Q., Basha, E.-A., Good, L., & Tarazi, Y. H. (2019). Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Veterinary Research, 15(1), 159. https://doi.org/10.1186/s12917-019-1901-1 DOI: https://doi.org/10.1186/s12917-019-1901-1

Jeong, J., Bae, S.-Y., & Choi, J. (2021). Identification of toxicity pathway of diesel particulate matter using AOP of PPARγ inactivation leading to pulmonary fibrosis. Environment International, 147. Scopus. https://doi.org/10.1016/j.envint.2020.106339 DOI: https://doi.org/10.1016/j.envint.2020.106339

Jeong, Y.-W., Kim, T.-E., Kim, J.-H., & Kwon, H.-J. (2012). Pathotyping avian pathogenic Escherichia coli strains in Korea. Journal of Veterinary Science, 13(2), 145–152. https://doi.org/10.4142/jvs.2012.13.2.145 DOI: https://doi.org/10.4142/jvs.2012.13.2.145

Johar, A., Al-Thani, N., Al-Hadidi, S. H., Dlissi, E., Mahmoud, M. H., & Eltai, N. O. (2021). Antibiotic Resistance and Virulence Gene Patterns Associated with Avian Pathogenic Escherichia coli (APEC) from Broiler Chickens in Qatar. Antibiotics, 10(5), Article 5. https://doi.org/10.3390/antibiotics10050564 DOI: https://doi.org/10.3390/antibiotics10050564

Johnson, T. J., Wannemuehler, Y., Doetkott, C., Johnson, S. J., Rosenberger, S. C., & Nolan, L. K. (2008). Identification of Minimal Predictors of Avian Pathogenic Escherichia coli Virulence for Use as a Rapid Diagnostic Tool. Journal of Clinical Microbiology, 46(12), Article 12. https://doi.org/10.1128/jcm.00816-08 DOI: https://doi.org/10.1128/JCM.00816-08

Kabiswa, W., Nanteza, A., Tumwine, G., & Majalija, S. (2018). Phylogenetic Groups and Antimicrobial Susceptibility Patterns of Escherichia coli from Healthy Chicken in Eastern and Central Uganda. Journal of Veterinary Medicine, 2018, 9126467. https://doi.org/10.1155/2018/9126467 DOI: https://doi.org/10.1155/2018/9126467

Kaper, J. B., Nataro, J. P., & Mobley, H. L. T. (2004). Pathogenic Escherichia coli. Nature Reviews Microbiology, 2(2), Article 2. https://doi.org/10.1038/nrmicro818 DOI: https://doi.org/10.1038/nrmicro818

Karacan Sever, N., & Akan, M. (2019). Molecular analysis of virulence genes of Salmonella Infantis isolated from chickens and turkeys. Microbial Pathogenesis, 126, 199–204. https://doi.org/10.1016/j.micpath.2018.11.006 DOI: https://doi.org/10.1016/j.micpath.2018.11.006

Kemmett, K., Humphrey, T., Rushton, S., Close, A., Wigley, P., & Williams, N. J. (2013). A longitudinal study simultaneously exploring the carriage of APEC virulence associated genes and the molecular epidemiology of faecal and systemic E. coli in commercial broiler chickens. PloS One, 8(6), e67749. https://doi.org/10.1371/journal.pone.0067749 DOI: https://doi.org/10.1371/journal.pone.0067749

Kim, J.-S., & Kim, Y. (2007). The inhibitory effect of natural bioactives on the growth of pathogenic bacteria. Nutrition Research and Practice, 1(4), 273–278. https://doi.org/10.4162/nrp.2007.1.4.273 DOI: https://doi.org/10.4162/nrp.2007.1.4.273

Kim, Y. B., Yoon, M. Y., Ha, J. S., Seo, K. W., Noh, E. B., Son, S. H., & Lee, Y. J. (2020). Molecular characterization of avian pathogenic Escherichia coli from broiler chickens with colibacillosis. Poultry Science, 99(2), 1088–1095. https://doi.org/10.1016/j.psj.2019.10.047 DOI: https://doi.org/10.1016/j.psj.2019.10.047

Kwon, S.-G., Cha, S.-Y., Choi, E.-J., Kim, B., Song, H.-J., & Jang, H.-K. (2008). Epidemiological Prevalence of Avian Pathogenic Escherichia coli Differentiated by Multiplex PCR from Commercial Chickens and Hatchery in Korea. Journal of Bacteriology and Virology, 38. https://doi.org/10.4167/jbv.2008.38.4.179 DOI: https://doi.org/10.4167/jbv.2008.38.4.179

Lamarche, M. G., Dozois, C. M., Daigle, F., Caza, M., Curtiss, R., Dubreuil, J. D., & Harel, J. (2005). Inactivation of the Pst System Reduces the Virulence of an Avian Pathogenic Escherichia coli O78 Strain. Infection and Immunity, 73(7), Article 7. https://doi.org/10.1128/iai.73.7.4138-4145.2005 DOI: https://doi.org/10.1128/IAI.73.7.4138-4145.2005

Li, Ewers, Laturnus, Diehl, Alt, Dai, Anta ̃o, Schnetz, & Wieler, L. H. (2008). Characterization of a yjjQ mutant of avian pathogenic Escherichia coli (APEC) | Microbiology Society. https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.2007/015784-0?crawler=true DOI: https://doi.org/10.1099/mic.0.2007/015784-0

Lutful Kabir, S. M. (2010). Avian Colibacillosis and Salmonellosis: A Closer Look at Epidemiology, Pathogenesis, Diagnosis, Control and Public Health Concerns. International Journal of Environmental Research and Public Health, 7(1), 89–114. https://doi.org/10.3390/ijerph7010089 DOI: https://doi.org/10.3390/ijerph7010089

Lynne, A. M., Foley, S. L., & Nolan, L. K. (2006). Immune response to recombinant Escherichia coli Iss protein in poultry. Avian Diseases, 50(2), 273–276. https://doi.org/10.1637/7441-092105R.1 DOI: https://doi.org/10.1637/7441-092105R.1

Mageiros, L., Méric, G., Bayliss, S. C., Pensar, J., Pascoe, B., Mourkas, E., Calland, J. K., Yahara, K., Murray, S., Wilkinson, T. S., Williams, L. K., Hitchings, M. D., Porter, J., Kemmett, K., Feil, E. J., Jolley, K. A., Williams, N. J., Corander, J., & Sheppard, S. K. (2021). Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nature Communications, 12(1), Article 1. https://doi.org/10.1038/s41467-021-20988-w DOI: https://doi.org/10.1038/s41467-021-20988-w

Marazzato, M., Aleandri, M., Massaro, M. R., Vitanza, L., Conte, A. L., Conte, M. P., Nicoletti, M., Comanducci, A., Goldoni, P., Maurizi, L., Zagaglia, C., & Longhi, C. (2020). Escherichia coli strains of chicken and human origin: Characterization of antibiotic and heavy-metal resistance profiles, phylogenetic grouping, and presence of virulence genetic markers. Research in Veterinary Science, 132, 150–155. https://doi.org/10.1016/j.rvsc.2020.06.012 DOI: https://doi.org/10.1016/j.rvsc.2020.06.012

Mbanga, J., & Nyararai, Y. O. (2015). Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe. The Onderstepoort Journal of Veterinary Research, 82(1), e1–e8. https://doi.org/10.4102/ojvr.v82i1.850 DOI: https://doi.org/10.4102/ojvr.v82i1.850

Meena, P. R., Yadav, P., Hemlata, H., Tejavath, K. K., & Singh, A. P. (2021). Poultry-origin extraintestinal Escherichia coli strains carrying the traits associated with urinary tract infection, sepsis, meningitis and avian colibacillosis in India. Journal of Applied Microbiology, 130(6), 2087–2101. https://doi.org/10.1111/jam.14905 DOI: https://doi.org/10.1111/jam.14905

Mellata, M., Dho-Moulin, M., Dozois, C. M., Curtiss, R., Brown, P. K., Arné, P., Brée, A., Desautels, C., & Fairbrother, J. M. (2003). Role of Virulence Factors in Resistance of Avian Pathogenic Escherichia coli to Serum and in Pathogenicity. Infection and Immunity, 71(1), Article 1. https://doi.org/10.1128/iai.71.1.536-540.2003 DOI: https://doi.org/10.1128/IAI.71.1.536-540.2003

Mitchell, N. M., Johnson, J. R., Johnston, B., Curtiss, R., & Mellata, M. (2015). Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs. Applied and Environmental Microbiology, 81(3), 1177–1187. https://doi.org/10.1128/AEM.03524-14 DOI: https://doi.org/10.1128/AEM.03524-14

Moriel, D. G., Bertoldi, I., Spagnuolo, A., Marchi, S., Rosini, R., Nesta, B., Pastorello, I., Corea, V. A. M., Torricelli, G., Cartocci, E., Savino, S., Scarselli, M., Dobrindt, U., Hacker, J., Tettelin, H., Tallon, L. J., Sullivan, S., Wieler, L. H., Ewers, C., … Serino, L. (2010). Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9072–9077. https://doi.org/10.1073/pnas.0915077107 DOI: https://doi.org/10.1073/pnas.0915077107

Murase, K., Martin, P., Porcheron, G., Houle, S., Helloin, E., Pénary, M., Nougayrède, J.-P., Dozois, C. M., Hayashi, T., & Oswald, E. (2016). HlyF Produced by Extraintestinal Pathogenic Escherichia coli Is a Virulence Factor That Regulates Outer Membrane Vesicle Biogenesis. The Journal of Infectious Diseases, 213(5), 856–865. https://doi.org/10.1093/infdis/jiv506 DOI: https://doi.org/10.1093/infdis/jiv506

Nadimpalli, M., Vuthy, Y., de Lauzanne, A., Fabre, L., Criscuolo, A., Gouali, M., Huynh, B.-T., Naas, T., Phe, T., Borand, L., Jacobs, J., Kerléguer, A., Piola, P., Guillemot, D., Le Hello, S., & Delarocque-Astagneau, E. (2019). Meat and Fish as Sources of Extended-Spectrum β-Lactamase–Producing Escherichia coli, Cambodia. Emerging Infectious Diseases, 25(1), 126–131. https://doi.org/10.3201/eid2501.180534 DOI: https://doi.org/10.3201/eid2501.180534

Nolan, L. K., Giddings, C. W., Horne, S. M., Doetkott, C., Gibbs, P. S., Wooley, R. E., & Foley, S. L. (2002). Complement resistance, as determined by viable count and flow cytometric methods, and its association with the presence of iss and the virulence of avian Escherichia coli. Avian Diseases, 46(2), 386–392. https://doi.org/10.1637/0005-2086(2002)046[0386:CRADBV]2.0.CO;2 DOI: https://doi.org/10.1637/0005-2086(2002)046[0386:CRADBV]2.0.CO;2

Paixão, A. C., Ferreira, A. C., Fontes, M., Themudo, P., Albuquerque, T., Soares, M. C., Fevereiro, M., Martins, L., & de Sá, M. I. C. (2016). Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates. Poultry Science, 95(7), Article 7. https://doi.org/10.3382/ps/pew087 DOI: https://doi.org/10.3382/ps/pew087

Parreira, V. R., & Gyles, C. L. (2003). A Novel Pathogenicity Island Integrated Adjacent to the thrW tRNA Gene of Avian Pathogenic Escherichia coli Encodes a Vacuolating Autotransporter Toxin. Infection and Immunity, 71(9), Article 9. https://doi.org/10.1128/iai.71.9.5087-5096.2003 DOI: https://doi.org/10.1128/IAI.71.9.5087-5096.2003

Pavelka, M. S., Wright, L. F., & Silver, R. P. (1991). Identification of two genes, kpsM and kpsT, in region 3 of the polysialic acid gene cluster of Escherichia coli K1. Journal of Bacteriology, 173(15), Article 15. https://doi.org/10.1128/jb.173.15.4603-4610.1991 DOI: https://doi.org/10.1128/jb.173.15.4603-4610.1991

Rahayuningtyas, I., Indrawati, A., Wibawan, I. W. T., Palupi, M. F., & Istiyaningsih, I. (2020). Phylogenetic group determination and plasmid virulence gene profiles of colistin-resistant Escherichia coli originated from the broiler meat supply chain in Bogor, Indonesia. Veterinary World, 13(9), 1807–1814. https://doi.org/10.14202/vetworld.2020.1807-1814 DOI: https://doi.org/10.14202/vetworld.2020.1807-1814

Ramírez-Hernández, A., Varón-García, A., & Sánchez-Plata, M. X. (2017). Microbiological Profile of Three Commercial Poultry Processing Plants in Colombia. Journal of Food Protection, 80(12), 1980–1986. https://doi.org/10.4315/0362-028X.JFP-17-028 DOI: https://doi.org/10.4315/0362-028X.JFP-17-028

Ren, X., Li, M., Xu, C., Cui, K., Feng, Z., Fu, Y., Zhang, J., & Liao, M. (2016). Prevalence and molecular characterization of Salmonella enterica isolates throughout an integrated broiler supply chain in China. Epidemiology and Infection, 144(14), 2989–2999. https://doi.org/10.1017/S0950268816001515 DOI: https://doi.org/10.1017/S0950268816001515

Rodriguez-Siek, K., Giddings, C., Doetkott, C., Johnson, T., Fakhr, M., & Nolan, L. (2005). Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology (Reading, England), 151, 2097–2110. https://doi.org/10.1099/mic.0.27499-0 DOI: https://doi.org/10.1099/mic.0.27499-0

Rouquet, G., Porcheron, G., Barra, C., Répérant, M., Chanteloup, N. K., Schouler, C., & Gilot, P. (2009). A Metabolic Operon in Extraintestinal Pathogenic Escherichia coli Promotes Fitness under Stressful Conditions and Invasion of Eukaryotic Cells. Journal of Bacteriology, 191(13), 4427–4440. https://doi.org/10.1128/JB.00103-09 DOI: https://doi.org/10.1128/JB.00103-09

Runyen-Janecky, L. J., Reeves, S. A., Gonzales, E. G., & Payne, S. M. (2003). Contribution of the Shigella flexneri Sit, Iuc, and Feo Iron Acquisition Systems to Iron Acquisition In Vitro and in Cultured Cells. Infection and Immunity, 71(4), 1919–1928. https://doi.org/10.1128/IAI.71.4.1919-1928.2003 DOI: https://doi.org/10.1128/IAI.71.4.1919-1928.2003

Sabri, M., Caza, M., Proulx, J., Lymberopoulos, M. H., Brée, A., Moulin-Schouleur, M., Curtiss, R., & Dozois, C. M. (2008). Contribution of the SitABCD, MntH, and FeoB metal transporters to the virulence of avian pathogenic Escherichia coli O78 strain chi7122. Infection and Immunity, 76(2), 601–611. https://doi.org/10.1128/IAI.00789-07 DOI: https://doi.org/10.1128/IAI.00789-07

Sadeghi Bonjar, M. S., Salari, S., Jahantigh, M., & Rashki, A. (2017). Frequency of iss and irp2 genes by PCR method in Escherichia coli isolated from poultry with colibacillosis in comparison with healthy chicken in poultry farms of Zabol, South East of Iran. Polish Journal of Veterinary Sciences, 20(2), 363–367. https://doi.org/10.1515/pjvs-2017-0044 DOI: https://doi.org/10.1515/pjvs-2017-0044

Schouler, C., Schaeffer, B., Brée, A., Mora, A., Dahbi, G., Biet, F., Oswald, E., Mainil, J., Blanco, J., & Moulin-Schouleur, M. (2012). Diagnostic strategy for identifying avian pathogenic Escherichia coli based on four patterns of virulence genes. Journal of Clinical Microbiology, 50(5), 1673–1678. https://doi.org/10.1128/JCM.05057-11

Schouler, C., Schaeffer, B., Brée, A., Mora, A., Dahbi, G., Biet, F., Oswald, E., Mainil, J., Blanco, J., & Moulin-Schouleur, M. (2020). Diagnostic Strategy for Identifying Avian Pathogenic Escherichia coli Based on Four Patterns of Virulence Genes. Journal of Clinical Microbiology, 50(5), Article 5. https://doi.org/10.1128/jcm.05057-11 DOI: https://doi.org/10.1128/JCM.05057-11

Silveira, F., Maluta, R. P., Tiba, M. R., de Paiva, J. B., Guastalli, E. a. L., & da Silveira, W. D. (2016). Comparison between avian pathogenic (APEC) and avian faecal (AFEC) Escherichia coli isolated from different regions in Brazil. Veterinary Journal (London, England: 1997), 217, 65–67. https://doi.org/10.1016/j.tvjl.2016.06.007 DOI: https://doi.org/10.1016/j.tvjl.2016.06.007

Solà-Ginés, M., Cameron-Veas, K., Badiola, I., Dolz, R., Majó, N., Dahbi, G., Viso, S., Mora, A., Blanco, J., Piedra-Carrasco, N., González-López, J. J., & Migura-Garcia, L. (2015). Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain. PloS One, 10(11), e0143191. https://doi.org/10.1371/journal.pone.0143191 DOI: https://doi.org/10.1371/journal.pone.0143191

Song, Y., Yu, L., Zhang, Y., Dai, Y., Wang, P., Feng, C., Liu, M., Sun, S., Xie, Z., & Wang, F. (2020). Prevalence and characteristics of multidrug-resistant mcr-1-positive Escherichia coli isolates from broiler chickens in Tai’an, China. Poultry Science, 99(2), Article 2. https://doi.org/10.1016/j.psj.2019.10.044 DOI: https://doi.org/10.1016/j.psj.2019.10.044

Stromberg, Z. R., Johnson, J. R., Fairbrother, J. M., Kilbourne, J., Van Goor, A., Curtiss, R., & Mellata, M. (2017). Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health. PloS One, 12(7), e0180599. https://doi.org/10.1371/journal.pone.0180599 DOI: https://doi.org/10.1371/journal.pone.0180599

Subedi, Luitel, Devkota, Bhattarai, Phuyal, Panthi, Shrestha, & Chaudhary. (2021). Antibiotic resistance pattern and virulence genes in avian pathogenic Escherichia coli (APEC) from different breeding systems | Veterinaria Italiana. https://www.veterinariaitaliana.izs.it/index.php/VetIt/article/view/1617

Subedi, M., Luitel, H., Devkota, B., Bhattarai, R. K., Phuyal, S., Panthi, P., Shrestha, A., & Chaudhary, D. K. (2018). Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Veterinary Research, 14(1), 113. https://doi.org/10.1186/s12917-018-1442-z DOI: https://doi.org/10.1186/s12917-018-1442-z

Tello, A., Austin, B., & Telfer, T. C. (2012). Selective Pressure of Antibiotic Pollution on Bacteria of Importance to Public Health. Environmental Health Perspectives, 120(8), 1100–1106. https://doi.org/10.1289/ehp.1104650 DOI: https://doi.org/10.1289/ehp.1104650

Timothy, S., Shafi, K., Leatherbarrow, A. H., Jordan, F. T. W., & Wigley, P. (2008). Molecular epidemiology of a reproductive tract-associated colibacillosis outbreak in a layer breeder flock associated with atypical avian pathogenic Escherichia coli. Avian Pathology: Journal of the W.V.P.A, 37(4), 375–378. https://doi.org/10.1080/03079450802216579 DOI: https://doi.org/10.1080/03079450802216579

Tuntufye, H. N., Ons, E., Pham, A. D. N., Luyten, T., Van Gerven, N., Bleyen, N., & Goddeeris, B. M. (2012). Escherichia coli ghosts or live E. coli expressing the ferri-siderophore receptors FepA, FhuE, IroN and IutA do not protect broiler chickens against avian pathogenic E. coli (APEC). Veterinary Microbiology, 159(3), Article 3. https://doi.org/10.1016/j.vetmic.2012.04.037 DOI: https://doi.org/10.1016/j.vetmic.2012.04.037

Umair, M., Mohsin, M., Ali, Q., Qamar, M. U., Raza, S., Ali, A., Guenther, S., & Schierack, P. (2019). Prevalence and Genetic Relatedness of Extended Spectrum-β-Lactamase-Producing Escherichia coli Among Humans, Cattle, and Poultry in Pakistan. Microbial Drug Resistance (Larchmont, N.Y.), 25(9), 1374–1381. https://doi.org/10.1089/mdr.2018.0450 DOI: https://doi.org/10.1089/mdr.2018.0450

van der Westhuizen, W. A., & Bragg, R. R. (2012). Multiplex polymerase chain reaction for screening avian pathogenic Escherichia coli for virulence genes. Avian Pathology: Journal of the W.V.P.A, 41(1), 33–40. https://doi.org/10.1080/03079457.2011.631982 DOI: https://doi.org/10.1080/03079457.2011.631982

Varga, C., Brash, M. L., Slavic, D., Boerlin, P., Ouckama, R., Weis, A., Petrik, M., Philippe, C., Barham, M., & Guerin, M. T. (2018). Evaluating Virulence-Associated Genes and Antimicrobial Resistance of Avian Pathogenic Escherichia coli Isolates from Broiler and Broiler Breeder Chickens in Ontario, Canada. Avian Diseases, 62(3), 291–299. https://doi.org/10.1637/11834-032818-Reg.1 DOI: https://doi.org/10.1637/11834-032818-Reg.1

Wang, G., Clark, C. G., & Rodgers, F. G. (2002). Detection in Escherichia coli of the Genes Encoding the Major Virulence Factors, the Genes Defining the O157:H7 Serotype, and Components of the Type 2 Shiga Toxin Family by Multiplex PCR. Journal of Clinical Microbiology, 40(10), Article 10. https://doi.org/10.1128/jcm.40.10.3613-3619.2002 DOI: https://doi.org/10.1128/JCM.40.10.3613-3619.2002

Xu, W.-Y., Li, Y.-J., & Fan, C. (2018). Different loci and mRNA copy number of the increased serum survival gene of Escherichia coli. Canadian Journal of Microbiology, 64(2), 147–154. https://doi.org/10.1139/cjm-2017-0363 DOI: https://doi.org/10.1139/cjm-2017-0363

Zhuge, X., Jiang, M., Tang, F., Sun, Y., Ji, Y., Xue, F., Ren, J., Zhu, W., & Dai, J. (2019). Avian-source mcr-1-positive Escherichia coli is phylogenetically diverse and shares virulence characteristics with E. coli causing human extra-intestinal infections. Veterinary Microbiology, 239, 108483. https://doi.org/10.1016/j.vetmic.2019.108483 DOI: https://doi.org/10.1016/j.vetmic.2019.108483

Cómo citar

APA

Durango Galv´an, H. E., Morales López, H., Murillo Ramos, E., Yepes-Blandón, J. A., Campo Nieto, O., Quiroz Torres, K. N., Echeverri Tirado, L. C. y Villarreal Julio, R. G. (2024). Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia. Revista Colombiana de Biotecnología, 25(2), 33–49. https://doi.org/10.15446/rev.colomb.biote.v25n2.110727

ACM

[1]
Durango Galv´an, H.E., Morales López, H., Murillo Ramos, E., Yepes-Blandón, J.A., Campo Nieto, O., Quiroz Torres, K.N., Echeverri Tirado, L.C. y Villarreal Julio, R.G. 2024. Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia. Revista Colombiana de Biotecnología. 25, 2 (ene. 2024), 33–49. DOI:https://doi.org/10.15446/rev.colomb.biote.v25n2.110727.

ACS

(1)
Durango Galv´an, H. E.; Morales López, H.; Murillo Ramos, E.; Yepes-Blandón, J. A.; Campo Nieto, O.; Quiroz Torres, K. N.; Echeverri Tirado, L. C.; Villarreal Julio, R. G. Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia. Rev. colomb. biotecnol. 2024, 25, 33-49.

ABNT

DURANGO GALV´AN, H. E.; MORALES LÓPEZ, H.; MURILLO RAMOS, E.; YEPES-BLANDÓN, J. A.; CAMPO NIETO, O.; QUIROZ TORRES, K. N.; ECHEVERRI TIRADO, L. C.; VILLARREAL JULIO, R. G. Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia. Revista Colombiana de Biotecnología, [S. l.], v. 25, n. 2, p. 33–49, 2024. DOI: 10.15446/rev.colomb.biote.v25n2.110727. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/110727. Acesso em: 7 ago. 2024.

Chicago

Durango Galv´an, Harold Eduardo, Hernando Morales López, Enderson Murillo Ramos, Jonny Andrés Yepes-Blandón, Omer Campo Nieto, Kelly Natalia Quiroz Torres, Laura Catalina Echeverri Tirado, y Rafael Guillermo Villarreal Julio. 2024. «Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia». Revista Colombiana De Biotecnología 25 (2):33-49. https://doi.org/10.15446/rev.colomb.biote.v25n2.110727.

Harvard

Durango Galv´an, H. E., Morales López, H., Murillo Ramos, E., Yepes-Blandón, J. A., Campo Nieto, O., Quiroz Torres, K. N., Echeverri Tirado, L. C. y Villarreal Julio, R. G. (2024) «Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia», Revista Colombiana de Biotecnología, 25(2), pp. 33–49. doi: 10.15446/rev.colomb.biote.v25n2.110727.

IEEE

[1]
H. E. Durango Galv´an, «Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia», Rev. colomb. biotecnol., vol. 25, n.º 2, pp. 33–49, ene. 2024.

MLA

Durango Galv´an, H. E., H. Morales López, E. Murillo Ramos, J. A. Yepes-Blandón, O. Campo Nieto, K. N. Quiroz Torres, L. C. Echeverri Tirado, y R. G. Villarreal Julio. «Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia». Revista Colombiana de Biotecnología, vol. 25, n.º 2, enero de 2024, pp. 33-49, doi:10.15446/rev.colomb.biote.v25n2.110727.

Turabian

Durango Galv´an, Harold Eduardo, Hernando Morales López, Enderson Murillo Ramos, Jonny Andrés Yepes-Blandón, Omer Campo Nieto, Kelly Natalia Quiroz Torres, Laura Catalina Echeverri Tirado, y Rafael Guillermo Villarreal Julio. «Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia». Revista Colombiana de Biotecnología 25, no. 2 (enero 24, 2024): 33–49. Accedido agosto 7, 2024. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/110727.

Vancouver

1.
Durango Galv´an HE, Morales López H, Murillo Ramos E, Yepes-Blandón JA, Campo Nieto O, Quiroz Torres KN, Echeverri Tirado LC, Villarreal Julio RG. Evaluation of virulence factors in clinical isolates of pathogenic E. coli in avian samples in Caloto, Colombia. Rev. colomb. biotecnol. [Internet]. 24 de enero de 2024 [citado 7 de agosto de 2024];25(2):33-49. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/110727

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

528

Descargas

Los datos de descargas todavía no están disponibles.