Publicado

2023-12-01

Use of probiotics in the catfish Sorubim cuspicaudus larviculture

Uso de probióticos en la larvicultura del bagre Sorubim cuspicaudus

DOI:

https://doi.org/10.15446/rev.colomb.biote.v25n2.110786

Palabras clave:

Bacillus, growth, intestinal folds, migratory fish, pimelodidae (en)
Bacillus, crecimiento, pliegues intestinales, peces migratorios, pimelodidae (es)

Descargas

Autores/as

Sorubim cuspicaudus, a migratory catfish distributed in the Magdalena, Sinú, and Catatumbo river basins, is categorized as vulnerable to extinction. Production of fingerlings in controlled environments stands as a strategic conservation approach, and larviculture is a critical phase in rearing this species. Probiotics are used for improvement in the critical stages of fingerling production. The study aimed to evaluate the use of probiotics (Bacillus subtilis and Bacillus licheniformis) during the larviculture phase of S. cuspicaudus. Larvae at 42 hours post-hatching (1.5±0.1mg, total length 5.7±0.4mm) were treated with four levels of probiotic inclusion in the water: 0, 5, 10, and 20ppm for 22 days. Water quality remained within suitable ranges for neotropical catfish species larviculture and the parameters assessed were weight gain (Gw), length gain (Gl), specific growth rate (G), survival rate (S), stress resistance (Sr), intestinal fold length (LF), and colony-forming units (CFU) count. Results showed higher Gl (22.23±3.5mm), Gw (40.0±12.6mg), G (14.9±1.5%/day), LP (205±72.7µm), and CFU (118.7±80.9) were found at 20 ppm (p<0.05). However, S and Sr exhibited no significant differences among treatments (p>0.05). The findings of this study suggest that probiotics (Bacillus subtilis and Bacillus licheniformis) could be used as an alternative to advance in the S. cuspicaudus larviculture.

Sorubim cuspicaudus, un bagre migratorio distribuido en las cuencas de los ríos Magdalena, Sinú y Catatumbo, se encuentra catalogado como una especie vulnerable a la extinción. La producción de alevinos en ambientes controlados es considerada como una estrategia crucial para su conservación, y la larvicultura es una fase crítica en la cría de esta especie. Para mejorar esta fase crítica de producción de alevinos se utilizan probióticos. El estudio tenía como objetivo evaluar el uso de probióticos (Bacillus subtilis y Bacillus licheniformis) durante la fase de larvicultura de S. cuspicaudus. Las larvas, a las 42 horas post eclosión (1,5±0,1mg, longitud total 5,7±0,4mm) fueron tratadas con cuatro niveles de inclusión de probióticos en el agua: 0, 5, 10 y 20ppm durante 22 días. La calidad del agua se mantuvo dentro de los rangos adecuados para la larvicultura de especies neotropicales de bagre y los parámetros evaluados fueron el aumento de peso (Gw), el aumento de longitud (GL), la tasa específica de crecimiento (G), la tasa de supervivencia (S), la resistencia al estrés (Sr), la longitud del pliegue intestinal (LF) y el recuento de unidades formadoras de colonias (UFC). Los resultados mostraron mayores GL (22,23±3,5 mm), Gw (40,0±12,6 mg), G (14,9±1,5%/día), LP (205±72,7 µm) y UFC (118,7±80,9) a 20 ppm (p<0,05). Sin embargo, S y Sr no mostraron diferencias significativas entre tratamientos (p>0,05). Los resultados de este estudio sugieren que los probióticos (Bacillus subtilis y Bacillus licheniformis) podrían utilizarse como alternativa para avanzar en la larvicultura de S. cuspicaudus.

Referencias

Adeoye, A. A., Yomla, R., Jaramillo-Torres, A., Rodiles, A., Merrifield, D. L., & Davies, S. J. (2016). Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture, 463, 61–70. https://doi.org/10.1016/j.aquaculture.2016.05.028 DOI: https://doi.org/10.1016/j.aquaculture.2016.05.028

Aerts, J., Schaeck, M., De Swaef, E., Ampe, B., & Decostere, A. (2018). Vibrio lentus as a probiotic candidate lowers glucocorticoid levels in gnotobiotic sea bass larvae. Aquaculture, 492, 40–45. https://doi.org/10.1016/j.aquaculture.2018.03.059 DOI: https://doi.org/10.1016/j.aquaculture.2018.03.059

Atencio Garcia, V., Kerguelén, E., Lina, W., & Ana, N. (2003). Manejo de la primera alimentación del bocachico (Prochilodus magdalenae). Revista Mvz Cordoba, 8. https://doi.org/10.21897/rmvz.1049 DOI: https://doi.org/10.21897/rmvz.1049

Atencio, V., Buelvas, V. M. P., Espitia, F. P., Mestra, R. O., & Carrasco, S. C. P. (2010). Manejo de la primera alimentación de dorada Brycon sinuensis ofreciendo larvas de bocachico Prochilodus magdalenae. Revista Colombiana de Ciencias Pecuarias, 23(3), Article 3. https://doi.org/10.17533/udea.rccp.324593

Avella, M. A., Place, A., Du, S.-J., Williams, E., Silvi, S., Zohar, Y., & Carnevali, O. (2012). Lactobacillus rhamnosus Accelerates Zebrafish Backbone Calcification and Gonadal Differentiation through Effects on the GnRH and IGF Systems. PLOS ONE, 7(9), e45572. https://doi.org/10.1371/journal.pone.0045572 DOI: https://doi.org/10.1371/journal.pone.0045572

Balcázar, J., Decamp, O., Vendrell, D., De Blas, I., & Ruiz-Zarzuela, I. (2006). Health and nutritional properties of probiotics in fish and shellfish. Microbial Ecology in Health and Disease, 18(2), 65–70. https://doi.org/10.1080/08910600600799497 DOI: https://doi.org/10.1080/08910600600799497

Begley, M., Hill, C., & Gahan, C. G. M. (2006). Bile Salt Hydrolase Activity in Probiotics. Applied and Environmental Microbiology, 72(3), 1729–1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006 DOI: https://doi.org/10.1128/AEM.72.3.1729-1738.2006

Cai, Y., Yuan, W., Shifeng, W., Guo, W., Li, A., Wu, Y., Chen, X., Ren, Z., & Zhou, Y. (2018). In vitro screening of putative probiotics and their dual beneficial effects: To white shrimp (Litopenaeus vannamei) postlarvae and to the rearing water. Aquaculture, 498. https://doi.org/10.1016/j.aquaculture.2018.08.024 DOI: https://doi.org/10.1016/j.aquaculture.2018.08.024

Cao, H., Yu, R., Zhang, Y., Hu, B., Jian, S., Wen, C., Kajbaf, K., Kumar, V., & Yang, G. (2019). Effects of dietary supplementation with β-glucan and Bacillus subtilis on growth, fillet quality, immune capacity, and antioxidant status of Pengze crucian carp (Carassius auratus var. Pengze). Aquaculture, 508, 106–112. https://doi.org/10.1016/j.aquaculture.2019.04.064 DOI: https://doi.org/10.1016/j.aquaculture.2019.04.064

Carnevali, O., de Vivo, L., Sulpizio, R., Gioacchini, G., Olivotto, I., Silvi, S., & Cresci, A. (2006). Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258(1), 430–438. https://doi.org/10.1016/j.aquaculture.2006.04.025 DOI: https://doi.org/10.1016/j.aquaculture.2006.04.025

Carnevali, O., Maradonna, F., & Gioacchini, G. (2017). Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic. Aquaculture, 472, 144–155. https://doi.org/10.1016/j.aquaculture.2016.03.037 DOI: https://doi.org/10.1016/j.aquaculture.2016.03.037

Cerezuela, R., Fumanal, M., Tapia-Paniagua, S. T., Meseguer, J., Moriñigo, M. A., & Esteban, M. A. (2012). Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell and Tissue Research, 350(3), 477–489. https://doi.org/10.1007/s00441-012-1495-4 DOI: https://doi.org/10.1007/s00441-012-1495-4

De la Hoz Maestre, J., Duarte, L. O., & Manjarrés-Martínez, L. (2017). Estadísticas de desembarco y esfuerzo de las pesquerías artesanales e industriales de Colombia entre marzo y diciembre de 2017. https://doi.org/10.13140/RG.2.2.14291.68645

Di, J., Chu, Z., Zhang, S., Huang, J., Du, H., & Wei, Q. (2019). Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus. Fish & Shellfish Immunology, 93, 711–719. https://doi.org/10.1016/j.fsi.2019.08.020 DOI: https://doi.org/10.1016/j.fsi.2019.08.020

Gisbert, E., Castillo, M., Skalli, A., Andree, K. B., & Badiola, I. (2013). Bacillus cereus var. Toyoi promotes growth, affects the histological organization and microbiota of the intestinal mucosa in rainbow trout fingerlings. Journal of Animal Science, 91(6), 2766–2774. https://doi.org/10.2527/jas.2012-5414 DOI: https://doi.org/10.2527/jas.2012-5414

Hoseinifar, S. H., Sun, Y., & Caipang, C. M. (2016). Short-chain fatty acids as feed supplements for sustainable aquaculture: An updated view. Aquaculture Research, 48. https://doi.org/10.1111/are.13239 DOI: https://doi.org/10.1111/are.13239

INCODER. (2006). PESCA Y ACUICULTURA COLOMBIA 2006.

Interaminense, J. A., Vogeley, J. L., Gouveia, C. K., Portela, R. W. S., Oliveira, J. P., Andrade, H. A., Peixoto, S. M., Soares, R. B., Buarque, D. S., & Bezerra, R. S. (2018). In vitro and in vivo potential probiotic activity of Bacillus subtilis and Shewanella algae for use in Litopenaeus vannamei rearing. Aquaculture, 488, 114–122. https://doi.org/10.1016/j.aquaculture.2018.01.027 DOI: https://doi.org/10.1016/j.aquaculture.2018.01.027

Kong, Y., Li, M., Chu, G., Liu, H., Shan, X., Wang, G., & Han, G. (2021). The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: Digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology. Aquaculture, 531, 735852. https://doi.org/10.1016/j.aquaculture.2020.735852 DOI: https://doi.org/10.1016/j.aquaculture.2020.735852

Kuebutornye, F. K. A., Tang, J., Cai, J., Yu, H., Wang, Z., Abarike, E. D., Lu, Y., Li, Y., & Afriyie, G. (2020). In vivo assessment of the probiotic potentials of three host-associated Bacillus species on growth performance, health status and disease resistance of Oreochromis niloticus against Streptococcus agalactiae. Aquaculture, 527, 735440. https://doi.org/10.1016/j.aquaculture.2020.735440 DOI: https://doi.org/10.1016/j.aquaculture.2020.735440

Kumar, V., Roy, S., Meena, D. K., & Sarkar, U. K. (2016). Application of Probiotics in Shrimp Aquaculture: Importance, Mechanisms of Action, and Methods of Administration. Reviews in Fisheries Science & Aquaculture, 24(4), 342–368. https://doi.org/10.1080/23308249.2016.1193841 DOI: https://doi.org/10.1080/23308249.2016.1193841

Lozano, G., Hernández, D., Chaves, N., Valderrama, M., Mojica, J., & Gómez, F. (2017). Characterization of skin patterns in Pseudoplatystoma Magdaleniatum. 2017 Sustainable Internet and ICT for Sustainability (SustainIT), 1–3. https://doi.org/10.23919/SustainIT.2017.8379806 DOI: https://doi.org/10.23919/SustainIT.2017.8379806

Martínez Cruz, P., Ibáñez, A. L., Monroy Hermosillo, O. A., & Ramírez Saad, H. C. (2012). Use of Probiotics in Aquaculture. International Scholarly Research Notices, 2012, e916845. https://doi.org/10.5402/2012/916845 DOI: https://doi.org/10.5402/2012/916845

Midhun, S. J., Neethu, S., Arun, D., Vysakh, A., Divya, L., Radhakrishnan, E. K., & Jyothis, M. (2019). Dietary supplementation of Bacillus licheniformis HGA8B improves growth parameters, enzymatic profile and gene expression of Oreochromis niloticus. Aquaculture, 505, 289–296. https://doi.org/10.1016/j.aquaculture.2019.02.064 DOI: https://doi.org/10.1016/j.aquaculture.2019.02.064

Mojica, J. I., Usma Oviedo, J. S., Alvarez León, R., & Lasso, C. A. (Eds.). (2012). Libro rojo de peces dulceacuícolas de Colombia (2012). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Mokhtar, D., Abd-Elhafez, E., & Hassan, A. (2015). Light and Scanning Electron Microscopic Studies on the Intestine of Grass Carp (Ctenopharyngodon idella): I-Anterior Intestine. Journal of Aquaculture Research and Development, 6. https://doi.org/10.4172/2155-9546.1000374 DOI: https://doi.org/10.4172/2155-9546.1000380

Mukherjee, A., Chandra, G., & Ghosh, K. (2019). Single or conjoint application of autochthonous Bacillus strains as potential probiotics: Effects on growth, feed utilization, immunity and disease resistance in Rohu, Labeo rohita (Hamilton). Aquaculture, 512, 734302. https://doi.org/10.1016/j.aquaculture.2019.734302 DOI: https://doi.org/10.1016/j.aquaculture.2019.734302

Nayak, S. K. (2010). Probiotics and immunity: A fish perspective. Fish & Shellfish Immunology, 29(1), 2–14. https://doi.org/10.1016/j.fsi.2010.02.017 DOI: https://doi.org/10.1016/j.fsi.2010.02.017

Newaj-Fyzul, A., Al-Harbi, A. H., & Austin, B. (2014). Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture, 431, 1–11. https://doi.org/10.1016/j.aquaculture.2013.08.026 DOI: https://doi.org/10.1016/j.aquaculture.2013.08.026

Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science (New York, N.Y.), 336(6086), 1262–1267. https://doi.org/10.1126/science.1223813 DOI: https://doi.org/10.1126/science.1223813

Paixão, P. E. G., do Couto, M. V. S., da Costa Sousa, N., Abe, H. A., Reis, R. G. A., Dias, J. A. R., Meneses, J. O., Cunha, F. S., Santos, T. B. R., da Silva, I. C. A., Medeiros, E. dos S., & Fujimoto, R. Y. (2020). Autochthonous bacterium Lactobacillus plantarum as probiotic supplementation for productive performance and sanitary improvements on clownfish Amphiprion ocellaris. Aquaculture, 526, 735395. https://doi.org/10.1016/j.aquaculture.2020.735395 DOI: https://doi.org/10.1016/j.aquaculture.2020.735395

Pardo-Carrasco, S., Salas Villalva, J., Reza Gaviria, L., Espinosa Araujo, J., & Atencio-García, V. (2015). Cryopreservation of Trans-Andean shovelnose catfish (Sorubim cuspicaudus) semen using dimethylacetamide. CES Medicina Veterinaria y Zootecnia, 10(2), 122–131.

Pérez-Sánchez, T., Mora-Sánchez, B., & Balcázar, J. L. (2018). Biological Approaches for Disease Control in Aquaculture: Advantages, Limitations and Challenges. Trends in Microbiology, 26(11), 896–903. https://doi.org/10.1016/j.tim.2018.05.002 DOI: https://doi.org/10.1016/j.tim.2018.05.002

Pérez-Sánchez, T., Ruiz-Zarzuela, I., de Blas, I., & Balcázar, J. L. (2014). Probiotics in aquaculture: A current assessment. Reviews in Aquaculture, 6(3), 133–146. https://doi.org/10.1111/raq.12033 DOI: https://doi.org/10.1111/raq.12033

Prieto-Guevara, M., Atencio Garcia, V., & Pardo Carrasco, S. (2015). El bagre blanco Sorubim cuspicaudus y su potencial en acuicultura.

Qi, Z., Zhang, X.-H., Boon, N., & Bossier, P. (2009). Probiotics in aquaculture of China—Current state, problems and prospect. Aquaculture, 290(1), 15–21. https://doi.org/10.1016/j.aquaculture.2009.02.012 DOI: https://doi.org/10.1016/j.aquaculture.2009.02.012

Ribas, L., & Piferrer, F. (2014). The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Reviews in Aquaculture, 6(4), 209–240. https://doi.org/10.1111/raq.12041 DOI: https://doi.org/10.1111/raq.12041

Ringø, E., Van Doan, H., Lee, S. h., Soltani, M., Hoseinifar, S. h., Harikrishnan, R., & Song, S. k. (2020). Probiotics, lactic acid bacteria and bacilli: Interesting supplementation for aquaculture. Journal of Applied Microbiology, 129(1), 116–136. https://doi.org/10.1111/jam.14628 DOI: https://doi.org/10.1111/jam.14628

Sewaka, M., Trullas, C., Chotiko, A., Rodkhum, C., Chansue, N., Boonanuntanasarn, S., & Pirarat, N. (2019). Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis spp.). Fish & Shellfish Immunology, 86, 260–268. https://doi.org/10.1016/j.fsi.2018.11.026 DOI: https://doi.org/10.1016/j.fsi.2018.11.026

Soltani, M., Ghosh, K., Hoseinifar, S. H., Kumar, V., Lymbery, A. J., Roy, S., & Ringø, E. (2019). Genus bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture, 27(3), 331–379. https://doi.org/10.1080/23308249.2019.1597010 DOI: https://doi.org/10.1080/23308249.2019.1597010

Sorieul, L., Wabete, N., Ansquer, D., Mailliez, J.-R., Pallud, M., Zhang, C., Lindivat, M., Boulo, V., & Pham, D. (2018). Survival improvement conferred by the Pseudoalteromonas sp. NC201 probiotic in Litopenaeus stylirostris exposed to Vibrio nigripulchritudo infection and salinity stress. Aquaculture, 495, 888–898. https://doi.org/10.1016/j.aquaculture.2018.06.058 DOI: https://doi.org/10.1016/j.aquaculture.2018.06.058

Sudha, A., Saravana Bhavan, T. Manjula, R. Kalpana, & M. Karthik. (2019). BACILLUS LICHENIFORMIS AS A PROBIOTIC BACTERIUM FOR CULTURE OF THE PRAWN MACROBRACHIUM ROSENBERGII. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 05(04). https://doi.org/10.26479/2019.0504.05 DOI: https://doi.org/10.36348/SJLS.2019.v04i09.004

Thurlow, C. M., Williams, M. A., Carrias, A., Ran, C., Newman, M., Tweedie, J., Allison, E., Jescovitch, L. N., Wilson, A. E., Terhune, J. S., & Liles, M. R. (2019). Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture, 503, 347–356. https://doi.org/10.1016/j.aquaculture.2018.11.051 DOI: https://doi.org/10.1016/j.aquaculture.2018.11.051

Tsai, C.-Y., Chi, C.-C., & Liu, C.-H. (2019). The growth and apparent digestibility of white shrimp, Litopenaeus vannamei, are increased with the probiotic, Bacillus subtilis. Aquaculture Research, 50(5), 1475–1481. https://doi.org/10.1111/are.14022 DOI: https://doi.org/10.1111/are.14022

Van Doan, H., Hoseinifar, S. H., Khanongnuch, C., Kanpiengjai, A., Unban, K., Van Kim, V., & Srichaiyo, S. (2018). Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture, 491, 94–100. https://doi.org/10.1016/j.aquaculture.2018.03.019 DOI: https://doi.org/10.1016/j.aquaculture.2018.03.019

Zhang, Q., Ma, H., Mai, K., Zhang, W., Liufu, Z., & Xu, W. (2010). Interaction of dietary Bacillus subtilis and fructooligosaccharide on the growth performance, non-specific immunity of sea cucumber, Apostichopus japonicus. Fish & Shellfish Immunology, 29(2), 204–211. https://doi.org/10.1016/j.fsi.2010.03.009 DOI: https://doi.org/10.1016/j.fsi.2010.03.009

Zokaeifar, H., Balcázar, J. L., Saad, C. R., Kamarudin, M. S., Sijam, K., Arshad, A., & Nejat, N. (2012). Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 33(4), 683–689. https://doi.org/10.1016/j.fsi.2012.05.027 DOI: https://doi.org/10.1016/j.fsi.2012.05.027

Cómo citar

APA

Herrera-Cruz, E., Vásquez-Machado, G., Estrada-Posada, A., Pardo-Camacho, K. I., Atencio-García, V. y Yepes-Blandón, J. A. (2024). Use of probiotics in the catfish Sorubim cuspicaudus larviculture. Revista Colombiana de Biotecnología, 25(2), 50–61. https://doi.org/10.15446/rev.colomb.biote.v25n2.110786

ACM

[1]
Herrera-Cruz, E., Vásquez-Machado, G., Estrada-Posada, A., Pardo-Camacho, K.I., Atencio-García, V. y Yepes-Blandón, J.A. 2024. Use of probiotics in the catfish Sorubim cuspicaudus larviculture. Revista Colombiana de Biotecnología. 25, 2 (ene. 2024), 50–61. DOI:https://doi.org/10.15446/rev.colomb.biote.v25n2.110786.

ACS

(1)
Herrera-Cruz, E.; Vásquez-Machado, G.; Estrada-Posada, A.; Pardo-Camacho, K. I.; Atencio-García, V.; Yepes-Blandón, J. A. Use of probiotics in the catfish Sorubim cuspicaudus larviculture. Rev. colomb. biotecnol. 2024, 25, 50-61.

ABNT

HERRERA-CRUZ, E.; VÁSQUEZ-MACHADO, G.; ESTRADA-POSADA, A.; PARDO-CAMACHO, K. I.; ATENCIO-GARCÍA, V.; YEPES-BLANDÓN, J. A. Use of probiotics in the catfish Sorubim cuspicaudus larviculture. Revista Colombiana de Biotecnología, [S. l.], v. 25, n. 2, p. 50–61, 2024. DOI: 10.15446/rev.colomb.biote.v25n2.110786. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/110786. Acesso em: 17 ago. 2024.

Chicago

Herrera-Cruz, Edwin, Gersson Vásquez-Machado, Ana Estrada-Posada, Kamylo Ivan Pardo-Camacho, Víctor Atencio-García, y Jonny Andrés Yepes-Blandón. 2024. «Use of probiotics in the catfish Sorubim cuspicaudus larviculture». Revista Colombiana De Biotecnología 25 (2):50-61. https://doi.org/10.15446/rev.colomb.biote.v25n2.110786.

Harvard

Herrera-Cruz, E., Vásquez-Machado, G., Estrada-Posada, A., Pardo-Camacho, K. I., Atencio-García, V. y Yepes-Blandón, J. A. (2024) «Use of probiotics in the catfish Sorubim cuspicaudus larviculture», Revista Colombiana de Biotecnología, 25(2), pp. 50–61. doi: 10.15446/rev.colomb.biote.v25n2.110786.

IEEE

[1]
E. Herrera-Cruz, G. Vásquez-Machado, A. Estrada-Posada, K. I. Pardo-Camacho, V. Atencio-García, y J. A. Yepes-Blandón, «Use of probiotics in the catfish Sorubim cuspicaudus larviculture», Rev. colomb. biotecnol., vol. 25, n.º 2, pp. 50–61, ene. 2024.

MLA

Herrera-Cruz, E., G. Vásquez-Machado, A. Estrada-Posada, K. I. Pardo-Camacho, V. Atencio-García, y J. A. Yepes-Blandón. «Use of probiotics in the catfish Sorubim cuspicaudus larviculture». Revista Colombiana de Biotecnología, vol. 25, n.º 2, enero de 2024, pp. 50-61, doi:10.15446/rev.colomb.biote.v25n2.110786.

Turabian

Herrera-Cruz, Edwin, Gersson Vásquez-Machado, Ana Estrada-Posada, Kamylo Ivan Pardo-Camacho, Víctor Atencio-García, y Jonny Andrés Yepes-Blandón. «Use of probiotics in the catfish Sorubim cuspicaudus larviculture». Revista Colombiana de Biotecnología 25, no. 2 (enero 24, 2024): 50–61. Accedido agosto 17, 2024. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/110786.

Vancouver

1.
Herrera-Cruz E, Vásquez-Machado G, Estrada-Posada A, Pardo-Camacho KI, Atencio-García V, Yepes-Blandón JA. Use of probiotics in the catfish Sorubim cuspicaudus larviculture. Rev. colomb. biotecnol. [Internet]. 24 de enero de 2024 [citado 17 de agosto de 2024];25(2):50-61. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/110786

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

440

Descargas

Los datos de descargas todavía no están disponibles.