Use of probiotics in the catfish Sorubim cuspicaudus larviculture
Uso de probióticos en la larvicultura del bagre Sorubim cuspicaudus
DOI:
https://doi.org/10.15446/rev.colomb.biote.v25n2.110786Palabras clave:
Bacillus, growth, intestinal folds, migratory fish, pimelodidae (en)Bacillus, crecimiento, pliegues intestinales, peces migratorios, pimelodidae (es)
Descargas
Sorubim cuspicaudus, a migratory catfish distributed in the Magdalena, Sinú, and Catatumbo river basins, is categorized as vulnerable to extinction. Production of fingerlings in controlled environments stands as a strategic conservation approach, and larviculture is a critical phase in rearing this species. Probiotics are used for improvement in the critical stages of fingerling production. The study aimed to evaluate the use of probiotics (Bacillus subtilis and Bacillus licheniformis) during the larviculture phase of S. cuspicaudus. Larvae at 42 hours post-hatching (1.5±0.1mg, total length 5.7±0.4mm) were treated with four levels of probiotic inclusion in the water: 0, 5, 10, and 20ppm for 22 days. Water quality remained within suitable ranges for neotropical catfish species larviculture and the parameters assessed were weight gain (Gw), length gain (Gl), specific growth rate (G), survival rate (S), stress resistance (Sr), intestinal fold length (LF), and colony-forming units (CFU) count. Results showed higher Gl (22.23±3.5mm), Gw (40.0±12.6mg), G (14.9±1.5%/day), LP (205±72.7µm), and CFU (118.7±80.9) were found at 20 ppm (p<0.05). However, S and Sr exhibited no significant differences among treatments (p>0.05). The findings of this study suggest that probiotics (Bacillus subtilis and Bacillus licheniformis) could be used as an alternative to advance in the S. cuspicaudus larviculture.
Sorubim cuspicaudus, un bagre migratorio distribuido en las cuencas de los ríos Magdalena, Sinú y Catatumbo, se encuentra catalogado como una especie vulnerable a la extinción. La producción de alevinos en ambientes controlados es considerada como una estrategia crucial para su conservación, y la larvicultura es una fase crítica en la cría de esta especie. Para mejorar esta fase crítica de producción de alevinos se utilizan probióticos. El estudio tenía como objetivo evaluar el uso de probióticos (Bacillus subtilis y Bacillus licheniformis) durante la fase de larvicultura de S. cuspicaudus. Las larvas, a las 42 horas post eclosión (1,5±0,1mg, longitud total 5,7±0,4mm) fueron tratadas con cuatro niveles de inclusión de probióticos en el agua: 0, 5, 10 y 20ppm durante 22 días. La calidad del agua se mantuvo dentro de los rangos adecuados para la larvicultura de especies neotropicales de bagre y los parámetros evaluados fueron el aumento de peso (Gw), el aumento de longitud (GL), la tasa específica de crecimiento (G), la tasa de supervivencia (S), la resistencia al estrés (Sr), la longitud del pliegue intestinal (LF) y el recuento de unidades formadoras de colonias (UFC). Los resultados mostraron mayores GL (22,23±3,5 mm), Gw (40,0±12,6 mg), G (14,9±1,5%/día), LP (205±72,7 µm) y UFC (118,7±80,9) a 20 ppm (p<0,05). Sin embargo, S y Sr no mostraron diferencias significativas entre tratamientos (p>0,05). Los resultados de este estudio sugieren que los probióticos (Bacillus subtilis y Bacillus licheniformis) podrían utilizarse como alternativa para avanzar en la larvicultura de S. cuspicaudus.
Referencias
Adeoye, A. A., Yomla, R., Jaramillo-Torres, A., Rodiles, A., Merrifield, D. L., & Davies, S. J. (2016). Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture, 463, 61–70. https://doi.org/10.1016/j.aquaculture.2016.05.028 DOI: https://doi.org/10.1016/j.aquaculture.2016.05.028
Aerts, J., Schaeck, M., De Swaef, E., Ampe, B., & Decostere, A. (2018). Vibrio lentus as a probiotic candidate lowers glucocorticoid levels in gnotobiotic sea bass larvae. Aquaculture, 492, 40–45. https://doi.org/10.1016/j.aquaculture.2018.03.059 DOI: https://doi.org/10.1016/j.aquaculture.2018.03.059
Atencio Garcia, V., Kerguelén, E., Lina, W., & Ana, N. (2003). Manejo de la primera alimentación del bocachico (Prochilodus magdalenae). Revista Mvz Cordoba, 8. https://doi.org/10.21897/rmvz.1049 DOI: https://doi.org/10.21897/rmvz.1049
Atencio, V., Buelvas, V. M. P., Espitia, F. P., Mestra, R. O., & Carrasco, S. C. P. (2010). Manejo de la primera alimentación de dorada Brycon sinuensis ofreciendo larvas de bocachico Prochilodus magdalenae. Revista Colombiana de Ciencias Pecuarias, 23(3), Article 3. https://doi.org/10.17533/udea.rccp.324593
Avella, M. A., Place, A., Du, S.-J., Williams, E., Silvi, S., Zohar, Y., & Carnevali, O. (2012). Lactobacillus rhamnosus Accelerates Zebrafish Backbone Calcification and Gonadal Differentiation through Effects on the GnRH and IGF Systems. PLOS ONE, 7(9), e45572. https://doi.org/10.1371/journal.pone.0045572 DOI: https://doi.org/10.1371/journal.pone.0045572
Balcázar, J., Decamp, O., Vendrell, D., De Blas, I., & Ruiz-Zarzuela, I. (2006). Health and nutritional properties of probiotics in fish and shellfish. Microbial Ecology in Health and Disease, 18(2), 65–70. https://doi.org/10.1080/08910600600799497 DOI: https://doi.org/10.1080/08910600600799497
Begley, M., Hill, C., & Gahan, C. G. M. (2006). Bile Salt Hydrolase Activity in Probiotics. Applied and Environmental Microbiology, 72(3), 1729–1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006 DOI: https://doi.org/10.1128/AEM.72.3.1729-1738.2006
Cai, Y., Yuan, W., Shifeng, W., Guo, W., Li, A., Wu, Y., Chen, X., Ren, Z., & Zhou, Y. (2018). In vitro screening of putative probiotics and their dual beneficial effects: To white shrimp (Litopenaeus vannamei) postlarvae and to the rearing water. Aquaculture, 498. https://doi.org/10.1016/j.aquaculture.2018.08.024 DOI: https://doi.org/10.1016/j.aquaculture.2018.08.024
Cao, H., Yu, R., Zhang, Y., Hu, B., Jian, S., Wen, C., Kajbaf, K., Kumar, V., & Yang, G. (2019). Effects of dietary supplementation with β-glucan and Bacillus subtilis on growth, fillet quality, immune capacity, and antioxidant status of Pengze crucian carp (Carassius auratus var. Pengze). Aquaculture, 508, 106–112. https://doi.org/10.1016/j.aquaculture.2019.04.064 DOI: https://doi.org/10.1016/j.aquaculture.2019.04.064
Carnevali, O., de Vivo, L., Sulpizio, R., Gioacchini, G., Olivotto, I., Silvi, S., & Cresci, A. (2006). Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258(1), 430–438. https://doi.org/10.1016/j.aquaculture.2006.04.025 DOI: https://doi.org/10.1016/j.aquaculture.2006.04.025
Carnevali, O., Maradonna, F., & Gioacchini, G. (2017). Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic. Aquaculture, 472, 144–155. https://doi.org/10.1016/j.aquaculture.2016.03.037 DOI: https://doi.org/10.1016/j.aquaculture.2016.03.037
Cerezuela, R., Fumanal, M., Tapia-Paniagua, S. T., Meseguer, J., Moriñigo, M. A., & Esteban, M. A. (2012). Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell and Tissue Research, 350(3), 477–489. https://doi.org/10.1007/s00441-012-1495-4 DOI: https://doi.org/10.1007/s00441-012-1495-4
De la Hoz Maestre, J., Duarte, L. O., & Manjarrés-Martínez, L. (2017). Estadísticas de desembarco y esfuerzo de las pesquerías artesanales e industriales de Colombia entre marzo y diciembre de 2017. https://doi.org/10.13140/RG.2.2.14291.68645
Di, J., Chu, Z., Zhang, S., Huang, J., Du, H., & Wei, Q. (2019). Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus. Fish & Shellfish Immunology, 93, 711–719. https://doi.org/10.1016/j.fsi.2019.08.020 DOI: https://doi.org/10.1016/j.fsi.2019.08.020
Gisbert, E., Castillo, M., Skalli, A., Andree, K. B., & Badiola, I. (2013). Bacillus cereus var. Toyoi promotes growth, affects the histological organization and microbiota of the intestinal mucosa in rainbow trout fingerlings. Journal of Animal Science, 91(6), 2766–2774. https://doi.org/10.2527/jas.2012-5414 DOI: https://doi.org/10.2527/jas.2012-5414
Hoseinifar, S. H., Sun, Y., & Caipang, C. M. (2016). Short-chain fatty acids as feed supplements for sustainable aquaculture: An updated view. Aquaculture Research, 48. https://doi.org/10.1111/are.13239 DOI: https://doi.org/10.1111/are.13239
INCODER. (2006). PESCA Y ACUICULTURA COLOMBIA 2006.
Interaminense, J. A., Vogeley, J. L., Gouveia, C. K., Portela, R. W. S., Oliveira, J. P., Andrade, H. A., Peixoto, S. M., Soares, R. B., Buarque, D. S., & Bezerra, R. S. (2018). In vitro and in vivo potential probiotic activity of Bacillus subtilis and Shewanella algae for use in Litopenaeus vannamei rearing. Aquaculture, 488, 114–122. https://doi.org/10.1016/j.aquaculture.2018.01.027 DOI: https://doi.org/10.1016/j.aquaculture.2018.01.027
Kong, Y., Li, M., Chu, G., Liu, H., Shan, X., Wang, G., & Han, G. (2021). The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: Digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology. Aquaculture, 531, 735852. https://doi.org/10.1016/j.aquaculture.2020.735852 DOI: https://doi.org/10.1016/j.aquaculture.2020.735852
Kuebutornye, F. K. A., Tang, J., Cai, J., Yu, H., Wang, Z., Abarike, E. D., Lu, Y., Li, Y., & Afriyie, G. (2020). In vivo assessment of the probiotic potentials of three host-associated Bacillus species on growth performance, health status and disease resistance of Oreochromis niloticus against Streptococcus agalactiae. Aquaculture, 527, 735440. https://doi.org/10.1016/j.aquaculture.2020.735440 DOI: https://doi.org/10.1016/j.aquaculture.2020.735440
Kumar, V., Roy, S., Meena, D. K., & Sarkar, U. K. (2016). Application of Probiotics in Shrimp Aquaculture: Importance, Mechanisms of Action, and Methods of Administration. Reviews in Fisheries Science & Aquaculture, 24(4), 342–368. https://doi.org/10.1080/23308249.2016.1193841 DOI: https://doi.org/10.1080/23308249.2016.1193841
Lozano, G., Hernández, D., Chaves, N., Valderrama, M., Mojica, J., & Gómez, F. (2017). Characterization of skin patterns in Pseudoplatystoma Magdaleniatum. 2017 Sustainable Internet and ICT for Sustainability (SustainIT), 1–3. https://doi.org/10.23919/SustainIT.2017.8379806 DOI: https://doi.org/10.23919/SustainIT.2017.8379806
Martínez Cruz, P., Ibáñez, A. L., Monroy Hermosillo, O. A., & Ramírez Saad, H. C. (2012). Use of Probiotics in Aquaculture. International Scholarly Research Notices, 2012, e916845. https://doi.org/10.5402/2012/916845 DOI: https://doi.org/10.5402/2012/916845
Midhun, S. J., Neethu, S., Arun, D., Vysakh, A., Divya, L., Radhakrishnan, E. K., & Jyothis, M. (2019). Dietary supplementation of Bacillus licheniformis HGA8B improves growth parameters, enzymatic profile and gene expression of Oreochromis niloticus. Aquaculture, 505, 289–296. https://doi.org/10.1016/j.aquaculture.2019.02.064 DOI: https://doi.org/10.1016/j.aquaculture.2019.02.064
Mojica, J. I., Usma Oviedo, J. S., Alvarez León, R., & Lasso, C. A. (Eds.). (2012). Libro rojo de peces dulceacuícolas de Colombia (2012). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
Mokhtar, D., Abd-Elhafez, E., & Hassan, A. (2015). Light and Scanning Electron Microscopic Studies on the Intestine of Grass Carp (Ctenopharyngodon idella): I-Anterior Intestine. Journal of Aquaculture Research and Development, 6. https://doi.org/10.4172/2155-9546.1000374 DOI: https://doi.org/10.4172/2155-9546.1000380
Mukherjee, A., Chandra, G., & Ghosh, K. (2019). Single or conjoint application of autochthonous Bacillus strains as potential probiotics: Effects on growth, feed utilization, immunity and disease resistance in Rohu, Labeo rohita (Hamilton). Aquaculture, 512, 734302. https://doi.org/10.1016/j.aquaculture.2019.734302 DOI: https://doi.org/10.1016/j.aquaculture.2019.734302
Nayak, S. K. (2010). Probiotics and immunity: A fish perspective. Fish & Shellfish Immunology, 29(1), 2–14. https://doi.org/10.1016/j.fsi.2010.02.017 DOI: https://doi.org/10.1016/j.fsi.2010.02.017
Newaj-Fyzul, A., Al-Harbi, A. H., & Austin, B. (2014). Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture, 431, 1–11. https://doi.org/10.1016/j.aquaculture.2013.08.026 DOI: https://doi.org/10.1016/j.aquaculture.2013.08.026
Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science (New York, N.Y.), 336(6086), 1262–1267. https://doi.org/10.1126/science.1223813 DOI: https://doi.org/10.1126/science.1223813
Paixão, P. E. G., do Couto, M. V. S., da Costa Sousa, N., Abe, H. A., Reis, R. G. A., Dias, J. A. R., Meneses, J. O., Cunha, F. S., Santos, T. B. R., da Silva, I. C. A., Medeiros, E. dos S., & Fujimoto, R. Y. (2020). Autochthonous bacterium Lactobacillus plantarum as probiotic supplementation for productive performance and sanitary improvements on clownfish Amphiprion ocellaris. Aquaculture, 526, 735395. https://doi.org/10.1016/j.aquaculture.2020.735395 DOI: https://doi.org/10.1016/j.aquaculture.2020.735395
Pardo-Carrasco, S., Salas Villalva, J., Reza Gaviria, L., Espinosa Araujo, J., & Atencio-García, V. (2015). Cryopreservation of Trans-Andean shovelnose catfish (Sorubim cuspicaudus) semen using dimethylacetamide. CES Medicina Veterinaria y Zootecnia, 10(2), 122–131.
Pérez-Sánchez, T., Mora-Sánchez, B., & Balcázar, J. L. (2018). Biological Approaches for Disease Control in Aquaculture: Advantages, Limitations and Challenges. Trends in Microbiology, 26(11), 896–903. https://doi.org/10.1016/j.tim.2018.05.002 DOI: https://doi.org/10.1016/j.tim.2018.05.002
Pérez-Sánchez, T., Ruiz-Zarzuela, I., de Blas, I., & Balcázar, J. L. (2014). Probiotics in aquaculture: A current assessment. Reviews in Aquaculture, 6(3), 133–146. https://doi.org/10.1111/raq.12033 DOI: https://doi.org/10.1111/raq.12033
Prieto-Guevara, M., Atencio Garcia, V., & Pardo Carrasco, S. (2015). El bagre blanco Sorubim cuspicaudus y su potencial en acuicultura.
Qi, Z., Zhang, X.-H., Boon, N., & Bossier, P. (2009). Probiotics in aquaculture of China—Current state, problems and prospect. Aquaculture, 290(1), 15–21. https://doi.org/10.1016/j.aquaculture.2009.02.012 DOI: https://doi.org/10.1016/j.aquaculture.2009.02.012
Ribas, L., & Piferrer, F. (2014). The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Reviews in Aquaculture, 6(4), 209–240. https://doi.org/10.1111/raq.12041 DOI: https://doi.org/10.1111/raq.12041
Ringø, E., Van Doan, H., Lee, S. h., Soltani, M., Hoseinifar, S. h., Harikrishnan, R., & Song, S. k. (2020). Probiotics, lactic acid bacteria and bacilli: Interesting supplementation for aquaculture. Journal of Applied Microbiology, 129(1), 116–136. https://doi.org/10.1111/jam.14628 DOI: https://doi.org/10.1111/jam.14628
Sewaka, M., Trullas, C., Chotiko, A., Rodkhum, C., Chansue, N., Boonanuntanasarn, S., & Pirarat, N. (2019). Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis spp.). Fish & Shellfish Immunology, 86, 260–268. https://doi.org/10.1016/j.fsi.2018.11.026 DOI: https://doi.org/10.1016/j.fsi.2018.11.026
Soltani, M., Ghosh, K., Hoseinifar, S. H., Kumar, V., Lymbery, A. J., Roy, S., & Ringø, E. (2019). Genus bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture, 27(3), 331–379. https://doi.org/10.1080/23308249.2019.1597010 DOI: https://doi.org/10.1080/23308249.2019.1597010
Sorieul, L., Wabete, N., Ansquer, D., Mailliez, J.-R., Pallud, M., Zhang, C., Lindivat, M., Boulo, V., & Pham, D. (2018). Survival improvement conferred by the Pseudoalteromonas sp. NC201 probiotic in Litopenaeus stylirostris exposed to Vibrio nigripulchritudo infection and salinity stress. Aquaculture, 495, 888–898. https://doi.org/10.1016/j.aquaculture.2018.06.058 DOI: https://doi.org/10.1016/j.aquaculture.2018.06.058
Sudha, A., Saravana Bhavan, T. Manjula, R. Kalpana, & M. Karthik. (2019). BACILLUS LICHENIFORMIS AS A PROBIOTIC BACTERIUM FOR CULTURE OF THE PRAWN MACROBRACHIUM ROSENBERGII. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 05(04). https://doi.org/10.26479/2019.0504.05 DOI: https://doi.org/10.36348/SJLS.2019.v04i09.004
Thurlow, C. M., Williams, M. A., Carrias, A., Ran, C., Newman, M., Tweedie, J., Allison, E., Jescovitch, L. N., Wilson, A. E., Terhune, J. S., & Liles, M. R. (2019). Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture, 503, 347–356. https://doi.org/10.1016/j.aquaculture.2018.11.051 DOI: https://doi.org/10.1016/j.aquaculture.2018.11.051
Tsai, C.-Y., Chi, C.-C., & Liu, C.-H. (2019). The growth and apparent digestibility of white shrimp, Litopenaeus vannamei, are increased with the probiotic, Bacillus subtilis. Aquaculture Research, 50(5), 1475–1481. https://doi.org/10.1111/are.14022 DOI: https://doi.org/10.1111/are.14022
Van Doan, H., Hoseinifar, S. H., Khanongnuch, C., Kanpiengjai, A., Unban, K., Van Kim, V., & Srichaiyo, S. (2018). Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture, 491, 94–100. https://doi.org/10.1016/j.aquaculture.2018.03.019 DOI: https://doi.org/10.1016/j.aquaculture.2018.03.019
Zhang, Q., Ma, H., Mai, K., Zhang, W., Liufu, Z., & Xu, W. (2010). Interaction of dietary Bacillus subtilis and fructooligosaccharide on the growth performance, non-specific immunity of sea cucumber, Apostichopus japonicus. Fish & Shellfish Immunology, 29(2), 204–211. https://doi.org/10.1016/j.fsi.2010.03.009 DOI: https://doi.org/10.1016/j.fsi.2010.03.009
Zokaeifar, H., Balcázar, J. L., Saad, C. R., Kamarudin, M. S., Sijam, K., Arshad, A., & Nejat, N. (2012). Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 33(4), 683–689. https://doi.org/10.1016/j.fsi.2012.05.027 DOI: https://doi.org/10.1016/j.fsi.2012.05.027
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).