Antagonismo de rizobacterias sobre hongos fitopatógenos, y su actividad microbiana con potencial biofertilizante, bioestimulante y biocontrolador
Antagonism of rhizobacteria on phytopathogenic fungi, and their microbial activity with biofertilizer, biostimulant and biocontroller potential
DOI:
https://doi.org/10.15446/rev.colomb.biote.v23n1.84808Palabras clave:
rizobios, Pseudomonas fluorescens, mecanismos promotores de crecimiento vegetal, Fusarium oxysporum, Colletotrichum gloeosporioides (es)rhizobia, Pseudomonas fluorescens, plant growth promoter mechanisms, Fusarium oxysporum, Colletotrichum gloeosporioides (en)
Descargas
Las rizobacterias forman parte de la gran cantidad de microorganismos que actúan como agentes de biocontrol, produciendo metabolitos que inducen resistencia sistémica en las plantas que inhiben el crecimiento de patógenos. El objetivo de esta investigación fue evaluar la capacidad de diez rizobacterias de los géneros Rhizobium, Bradyrhizobium, Sinorhizobium, Ochrobactrum y Pseudomonas para producir ácido cianhídrico (HCN), sideróforos y ácido indol-acético (AIA), disolver fosfato, fijar nitrógeno e inhibir el crecimiento de fitopatógenos. Se realizaron todas las pruebas fisiológicas y bioquímicas correspondientes, así como la prueba de antagonismo in vitro contra los fitopatógenos Fusarium oxysporum, Colletotrichum gloeosporioides y Rhizoctonia solani. Cinco cepas produjeron una mayor cantidad de AIA en relación a las otras en presencia de triptófano, la cepa ES1 (Ochrobactrum sp.) produjo HCN, el 50 % de las cepas evaluadas liberaron sideróforos, el 60 % disolvió fósforo, y todas resultaron positivas para la fijación de nitrógeno. Nueve cepas inhibieron el crecimiento de F. oxysporum entre 40 % y 65 %, la cepa Alf (Pseudomonas fluorescens) inhibió además el crecimiento de C. gloeosporioides en un 22 %, y ninguna inhibió el crecimiento de R. solani. Los rizobios evaluados y la cepa de Pseudomonas fluorescens podrían ejercer efectos beneficiosos sobre las plantas a través de mecanismos directos e indirectos, o una combinación de ambos, lo que las convierte en una opción sostenible para la producción de cultivos.
Rhizobacteria are part of the large number of microorganisms that act as biocontrol agents, producing metabolites that induce systemic resistance in plants and inhibit the growth of pathogens. The objective of this research was to evaluate the capacity of ten rhizobacteria of the genera Rhizobium, Bradyrhizobium, Sinorhizobium, Ochrobactrum and Pseudomonas to produce hydrogen cyanide (HCN), siderophores and indole acetic acid (IAA), dissolve phosphate, fix nitrogen and inhibit the growth of phytopathogens. All the corresponding physiological and biochemical tests were carried out, in addition to an in vitro antagonism test against the phytopathogens Fusarium oxysporum, Colletotrichum gloeosporioides and Rhizoctonia solani. Five strains produced a greater amount of IAA with respect to the others in the presence of tryptophan, the strain ES1 (Ochrobactrum sp.) produced HCN, 50% of the evaluated strains released siderophores, 60% solubilized phosphorus and all were positive for nitrogen fixation. Nine strains inhibited the growth of F. oxysporum by 40% to 65%. The Alf strain (Pseudomonas fluorescens) inhibited the growth of C. gloeosporioides by 22% while none inhibited the growth of R. solani. The rhizobia tested and the Pseudomonas fluorescens strain may have favorable effects on plants through direct and indirect mechanisms, or a combination of both, making them a sustainable option for crop production.
Referencias
Agrios, G. N. (2005). Fitopatología. Segunda edición. México. Editorial Limusa, 838 p.
Antoun H, Beauchamp Ch, Goussard N, Chabot R, Ladande R. (1998). Potencial of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant and Soil, 204, 57 - 67. DOI: https://doi.org/10.1007/978-94-017-2321-3_5
Antoun, H. (2012). Beneficial Microorganisms for the Sustainable Use of Phosphates in Agriculture. Procedia Engineering 46, 62 – 67. DOI: https://doi.org/10.1016/j.proeng.2012.09.446
Anzuay, M.S., Ruiz Ciancio, M.G., Ludueña, L.M., Angelini, J.G., Barros, G., Pastor, N., & Tauriana, T. (2017). Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides. Microbiological Research 199, 98–109. DOI: https://doi.org/10.1016/j.micres.2017.03.006
Avendaño, C., Arbeláez, G. & Rondón, G. (2006). Control biológico del marchitamiento vascular causado por Fusarium oxysporum f. sp. Phaseoli en fríjol Phaseolus vulgaris, mediante la acción combinada de Entrophospora colombiana, Trichoderma sp., y Pseudomona fluorescens. Agron. Col. 24, 62 - 67.
Aysan E, Demir S. 2009. Using Arbuscular Mycorrhizal Fungi and Rhizobium leguminosarum Biovar phaseoli agains Sclerotinia sclerotiorum (Lib.) de Bary in the Common Bean (Phaseolus vulgaris L.). Plant Pathology Journal, 8(2), 74 – 78. DOI: https://doi.org/10.3923/ppj.2009.74.78
Bagg, A., & Neilands, J.B. (1987) Molecular mechanism of regulation of siderophore–mediated iron assimilation. Microbiol. Rev. 51, 509. DOI: https://doi.org/10.1128/mr.51.4.509-518.1987
Bakker, A.W. & Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth-stimulation. Soil Biol. Biochem. 19, 451-457. DOI: https://doi.org/10.1016/0038-0717(87)90037-X
Bhattacharyya, P.N., & Jha, D.K. (2012). Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 28(4),1327-1350. DOI: https://doi.org/10.1007/s11274-011-0979-9
Blanco, E.L., Marquina, M.E. & Castro, Y. (2013). Respuestas a la aplicación de carbamatos en dos aislados rizobianos provenientes de Mucuchíes, Estado Mérida, Venezuela. Bioagro 25(2), 117-128.
Blanco, E.L., Castro, Y., Olivo, A., Skwierinski, R. & Moronta Barrios, F. (2018). Germinación y crecimiento de plántulas de pimentón y lechuga inoculadas con rizobios e identificación molecular de las cepas. Bioagro 30(3), 207-218.
Bric, J.M., Bostock, R.M. & Silverston, S.E. (1991). Rapid in situ assay for indolacetic acid production by bacteria inmobilized on nitocellulose membrane. Appl. Env. Microbiol 57(2), 535-538. DOI: https://doi.org/10.1128/aem.57.2.535-538.1991
Cañedo, V. & Ames, T. (2004). Manual de Laboratorio para el manejo de hongos entomopatógenos. Centro Internacional de la Papa. Perú. 62 p.
Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005) Use of plant growth–promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Env. Microbiol. 71, 4951–4959. DOI: https://doi.org/10.1128/AEM.71.9.4951-4959.2005
Dinesh, R., Anandaraj, M., Kumar, A., Kundil, Y., Purayil, K., & Aravind, R. (2015). Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiological Research 173, 34-43. DOI: https://doi.org/10.1016/j.micres.2015.01.014
Dobbelaere S., Croonenborghs A., Thys A., Vande Brock A. & Vanderleyden J. (1999). Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212, 155-164. DOI: https://doi.org/10.1023/A:1004658000815
Ezziyyani, M., Pérez Sánchez, C., Requena, M.E., Ahmed, A.S. & Candela, M.E. (2004a). Evaluación del biocontrol de Phytophthota capsisi en pimiento (Capsicum annuum L.) por tratamiento con Burkholderia cepacia. Anales de Biología 26, 61-68.
Ezziyyani, M., Pérez Sánchez, C., Requena, M.E., Rubio, L. & Candela, M.E. (2004b). Biocontrol por Streptomuces rochei –Ziyani-, de la podredumbre del pimiento (Capsicum annuum L.) causada por Phytophthora capsici. Anales de Biología 26, 69-78.
Ferrera, R., González, M., & Rodríguez M. (1993). Manual de Agromicrobiología. Edit. Trillas. Méjico. 139 p.
Fravel, D., Olivain, C., & Alabouvette, C. (2003). Research review Fusarium oxysporum and its biocontrol. New Phyt. 157, 493-502. DOI: https://doi.org/10.1046/j.1469-8137.2003.00700.x
Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R.K., Laxmipathi Gowda, C.L. & Krishnamurthy, L. (2015). Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5, 355–377. DOI: https://doi.org/10.1007/s13205-014-0241-x
Glickmann, E. & Desauxx, Y. (1995). A Critical Examination of the Specificity of the Salkowski Reagent for Indolic Compounds Produced by Phytopathogenic Bacteria. Applied and Environmental Microbiology 61(2), 793–796. DOI: https://doi.org/10.1128/aem.61.2.793-796.1995
Goldstein, A.H. (1995). Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria. Biol. Agric. Hort. 12, 185–193. DOI: https://doi.org/10.1080/01448765.1995.9754736
Hernández, A., Rives, N., Caballero, A., Hernández, A.N & Heydrich, M. (2004). Caracterización de rizobacterias asociadas al cultivo de maíz en la producción de metabolitos del tipo AIA, sideróforos y ácido salicílico. Rev. Col. Biotec. 6(1), 6-13.
Holt J.G. & Krieg, N.R. 1994. Enrichment and isolation. In Gerhart P. Murray RGE. Wood WA. Krieg NR (Eds.) Methods for general and molecular biology. Ch. 8. ASM. Washington. DC, EEUU. pp. 179-212.
Iyer, B. & Rajkumar, S. (2018). Rhizobia, In Reference Module in Life Sciences, Elsevier, http://dx.doi.org/10.1016/B978-0-12-809633-8.13104-8 DOI: https://doi.org/10.1016/B978-0-12-809633-8.13104-8
Pacheco-Hernández, X.J., Rodríguez-Dorantes, A., González-Rivera, R., Amora-Lazcano, E., Guerrero-Zúñiga, L.A. & Rodríguez-Tovar, A.V. (2015). Evaluación del efecto fitotóxico de rizobacterias deletéreas sobre el crecimiento radical de Axonopus affinis (chase) y Lens esculenta (moench). Polibotánica. 40, 137-152. DOI: https://doi.org/10.18387/polibotanica.40.9
Palaniyandi, S. A., Yang, S. H., Cheng, J. H., Meng, L., & Suh, J. W. (2011). Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. Journal of Applied Microbiology, 111(2), 443-455. DOI: https://doi.org/10.1111/j.1365-2672.2011.05048.x
Reyes, I., Bernier, L., Simard, R. & Antoun, H. (1999). Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiology Ecology 28, 281-290. DOI: https://doi.org/10.1111/j.1574-6941.1999.tb00583.x
Marquina, M.E., González, N.E. & Castro, Y. (2011). Caracterización fenotípica y genotípica de doce rizobios aislados de diversas regiones geográficas de Venezuela. Biología Tropical. 59(3), 1017-1036.
Mondino, P. & Vero, S. (2006). Control biológico de patógenos en plantas. Editorial. Facultad de Agronomía Universidad de la República. Montevideo, Uruguay. pp. 158.
Montgomery, D. (1991). Diseño y análisis de experimentos. Editorial Iberoamericana. 541 p.
Mota, E., Mangrich, J., Primieri, S., Machado, B., Pigozzi, L., Chibilski, E., Schweitzer, D., Dalla, M., & Dobler, M. (2014). Obtenção de bactérias produtoras de ácido indol-3-acético. 4° Seminario de Pesquisa, Extensao e Inovacao do IFSC. At Gaspar, Vol.1. https://www.researchgate.net/publication/266078210_Obtencao_de_bacterias_produtoras_de_acido_indol-3-acetico.
Mourad, K., Fadhila, K., Chahinez, M., Meriem, R., Philippe, L & Abdelkader B.(2009) Antimicrobial activities of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria. Grasas y aceites, 60(2), 139 – 146. DOI: https://doi.org/10.3989/gya.074808
Owen, A., & Zdor, R. (2001). Effect of cyanogenic rhizobacteria on the growth of velvetleaf (Abutilon theophrasti) and corn (Zea mays) in autoclaved soil and the influence of supplemental glycine. Soil Biol. Biochem., 33, 801-809. DOI: https://doi.org/10.1016/S0038-0717(00)00228-5
Paredes – Mendoza, M. & Espinosa – Victoria, D. (2010). Ácidos orgánicos producidos por rizobacterias que solubilizan fosfato: una revisión crítica. Terra Latinoamericana 28, 61-70.
Schwyn, B. & Neilands, J.B. (1987). Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9
Volpiano, C.G., Lisboa, B., Granada, C., Sao José, J., De Oliveira, A., Beneduzi, A., Perevalova, Y., Passaglia, L. & Vargas, L. (2019). Rhizobia for Biological Control of Plant Diseases. In Microbiome in Plant Health and Disease. V. Kumar et al. (eds.). Springer Nature Singapore Pte Ltd. 2019 315. doi.org/10.1007/978-981-13-8495-0_14 DOI: https://doi.org/10.1007/978-981-13-8495-0_14
Vincent, J. M. (1975). Manual práctico de rizobiología. Editorial Hemisferio Sur. Buenos Aires.
Vessey, J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255, 571-586. DOI: https://doi.org/10.1023/A:1026037216893
Wei, G., Kloepper, J.W. & Tuzun, S. (1991). Induction of systemic resistance of Cucumber to Colletotrichum orbiculare by select strains of Plant Growth-Promoting Rhizobacteria. Phytopathology. 81(12), 1508-1512. DOI: https://doi.org/10.1094/Phyto-81-1508
Xue, Ch., Penton, C.R., Shen, Z., Zhang, R., Huang, Q, Li, R., Ruan, Y., & Shen, Q. (2015). Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci Rep (5), 11124. DOI: https://doi.org/10.1038/srep14596
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Alondra Santos Villegas, Nuria Jiménez-Juárez, Minerva Rosas Morales, Dalia Castillo-Hernández. (2024). In vitro biocontrol of phytopathogenic fungi isolated from the rhizosphere of multiple crops by a native Trichoderma strain. Journal of Biological Research - Bollettino della Società Italiana di Biologia Sperimentale, https://doi.org/10.4081/jbr.2024.11664.
2. C. Pabón-Mora, E. Quevedo, R. Ortega-Toro. (2023). Green-Based Nanocomposite Materials and Applications. Engineering Materials. , p.391. https://doi.org/10.1007/978-3-031-18428-4_19.
3. Antonio Samudio Oggero, Magalí Valdez Borda, Carmen María Félix Pablos, Gladis Leguizamón, Fernando Mathías Morínigo, Víctor González Caballero, Ariel Farías, Héctor Nakayama, Sergio de los Santos Villalobos. (2024). Draft genome sequence of Agrobacterium pusense strain CMT1: A promising growth-promoting bacterium isolated from nodules of soybean (Glycine max L. Merrill) crops for the One Health approach in Paraguay. Current Research in Microbial Sciences, 7, p.100259. https://doi.org/10.1016/j.crmicr.2024.100259.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2021 Revista Colombiana de Biotecnología
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).