Publicado

2022-12-01

ARN de interferencia (ARNi): una herramienta eficaz en agrobiotecnología

RNA interference (RNAi): an effective tool in agrobiotechnology

DOI:

https://doi.org/10.15446/rev.colomb.biote.v24n2.99397

Palabras clave:

ARN interferente, aplicaciones, control biológico, fitopatógenos, plagas. (es)
RNA Interference, applications, biological control, phytopathogens, pests (en)

Descargas

Autores/as

El ARN de interferencia (ARNi) es un mecanismo evolutivamente conservado en la mayoría de las células eucariotas que permite silenciar genes mediante la degradación de ARN mensajero (ARNm) y la supresión de la síntesis de proteínas. En plantas, las moléculas de ARNi están involucradas en mecanismos de defensa contra patógenos y transposones, en la respuesta adaptativa al estrés, y en la expresión de genes relacionados con su crecimiento. El ARNi se considera una herramienta biotecnológica eficaz para silenciar la expresión de genes de microorganismos fitopatógenos, esto permite el diseño de bioplaguicidas ambientalmente seguros con una afinidad y selectividad, en muchos casos superior a la de los plaguicidas químicos. En esta revisión se señalan los últimos avances en la aplicación del ARNi en el contexto agrícola y su efectividad en el control biológico de fitopatógenos e insectos plaga. Asimismo, se presentan diversos ensayos experimentales cuyos resultados pueden ser la base para futuros bioproductos, además de algunos ejemplos disponibles en el mercado. Por último, se abordan aspectos de bioseguridad y consideraciones regulatorias necesarias para la aceptación y uso de esta tecnología a nivel global.

RNA interference (RNAi) is an evolutionarily conserved mechanism in most eukaryotic cells that allows genes to be silenced by degradation of messenger RNA (mRNA) and suppression of protein synthesis. In plants, RNAi molecules are involved in defense mechanisms against pathogens and transposons, in the adaptive response to stress, and in the expression of genes related to their growth. RNAi is an effective biotechnological tool to silence the expression of specific genes which are essential for the survival of phytopathogenic microorganisms, thus allowing the design of environmentally safe biopesticides with affinity and selectivity, in many cases greater than chemical pesticides. This review describes the latest advances in the application of RNAi in the agricultural context and its effectiveness in the biological control of phytopathogens and pest insects. Likewise, various experimental trials are presented, the results of which may be the basis for future bioproducts, as well as some examples available on the market. Finally, biosafety aspects and regulatory considerations necessary for the acceptance and use of this technology at a global level are presented.

Referencias

Aguilera G., Padilla B., Flórez C. Rubio J., y Acuña J. (2011) ARN interferente: Potenciales usos en genómica funcional y control genético de Hypothenemus hampei (Coleoptera: Scolytinae) Revista Colombiana de Entomología 37 (2): 167-172 DOI: https://doi.org/10.25100/socolen.v37i2.9070

Alimentos transgénicos. (s. f.). Ministerio de Salud y Protección. https://www.minsalud.gov.co/proteccionsocial/Paginas/Alimentos-transg%C3%A9nicos.aspx

Axtell, M. J. (2013). Classification and Comparison of Small RNAs from Plants. Annual Review of Plant Biology, 64(1), 137–159. https://doi.org/10.1146/annurev-arplant-050312-120043 DOI: https://doi.org/10.1146/annurev-arplant-050312-120043

Bayer. (s. f.). SmartStax® PRO with RNAi Technology. https://traits.bayer.com/corn/Pages/SmartStax-PRO.aspx

Bernstein, E., Caudy, A. A., Hammond, S. M., & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818), 363–366. https://doi.org/10.1038/35053110 DOI: https://doi.org/10.1038/35053110

Borah M., and Konakalla N. RNAi technology: a novel platform in crop protection. 2021 Emerging Trends in Plant Pathology pp 561-575 https://doi.org/10.1007/978-981-15-6275-4_24 DOI: https://doi.org/10.1007/978-981-15-6275-4_24

Boualem, A., Dogimont, C., & Bendahmane, A. (2016). The battle for survival between viruses and their host plants. Current Opinion in Virology, 17, 32–38. https://doi.org/10.1016/j.coviro.2015.12.001 DOI: https://doi.org/10.1016/j.coviro.2015.12.001

C-5 | GM Approval Database- ISAAA.org. (s. f.). ISAAA.https://www.isaaa.org/gmapprovaldatabase/event/default.asp?EventID=236

Cai, Q., Qiao, L., Wang, M., He, B., Lin, F. M., Palmquist, J., Huang, S., & Jin, H. (2018). Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science, 360(6393), 1126–1129. https://doi.org/10.1126/SCIENCE.AAR4142 DOI: https://doi.org/10.1126/science.aar4142

Canacuán, F. (2016). Silenciamiento mediado por RNA de genes asociados a patogenicidad y crecimiento en Pseucercospora fijiensis (Mycosphaerella fijensis). Trabajo de investigación presentado como requisito parcial para optar al título de Magister en Ciencias – Biotecnología. Universidad Nacional de Colombia, Sede Medellín.

Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642–655. https://doi.org/10.1016/j.cell.2009.01.035Christiaens, O., Dzhambazova, T., Kostov, K., Arpaia, S., Joga, M. R., Urru, I., et al. (2018). Literature review of baseline information on RNAi to support the environmental risk assessment of RNAi-based GM plants. EFSA Support. Publ. 2018: En 1424, 173 pp. doi: 10.2903/sp.efsa.2018

Cooper, B., & Campbell, K. B. (2017). Protection Against Common Bean Rust Conferred by a Gene-Silencing Method. Phytopathology, 107(8), 920–927. https://doi.org/10.1094/phyto-03-17-0095-r DOI: https://doi.org/10.1094/PHYTO-03-17-0095-R

Dalakouras, A., Wassenegger, M., Dadami, E., Ganopoulos, I., Pappas, M. L. & Papadopoulou, K. (2019). Genetically Modified Organism-Free RNA Interference: Exogenous Application of RNA Molecules in Plants. Plant Physiology, 182(1), 38–50. https://doi.org/10.1104/pp.19.00570 DOI: https://doi.org/10.1104/pp.19.00570

Dávalos, A., Henriques, R., Latasa, M. J., Laparra, M., and Coca, M. (2019). Literature review of baseline information on non-coding RNA (ncRNA) to support the risk assessment of ncRNA-based genetically modified plants for food and feed. EFSA Support. Publ. 2019: EN-1688, 220 pp. doi:10.2903/ sp.efsa.2019.

de Andrade, E. C., & Hunter, W. B. (2016). RNA Interference – Natural Gene-Based Technology for Highly Specific Pest Control (HiSPeC). RNA Interference. Published. https://doi.org/10.5772/61612 DOI: https://doi.org/10.5772/61612

Dommes, A. B., Gross, T., Herbert, D. B., Kivivirta, K. I., & Becker, A. (2018). Virus-induced gene silencing: empowering genetics in non-model organisms. Journal of Experimental Botany, 70(3), 757–770. https://doi.org/10.1093/jxb/ery411 DOI: https://doi.org/10.1093/jxb/ery411

Dominska, M., & Dykxhoorn, D. M. (2010). Breaking down the barriers: siRNA delivery and endosome escape. Journal of Cell Science, 123(8), 1183–1189. https://doi.org/10.1242/jcs.066399 DOI: https://doi.org/10.1242/jcs.066399

Faisal, M., Abdel-Salam, E. M., Alatar, A. A., Saquib, Q., Alwathnani, H. A., & Canto, T. (2019). Genetic Transformation and siRNA-Mediated Gene Silencing for Aphid Resistance in Tomato. Agronomy, 9(12), 893. https://doi.org/10.3390/agronomy9120893 DOI: https://doi.org/10.3390/agronomy9120893

Fire, A. (1998). Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 DOI: https://doi.org/10.1038/35888

GreenLight Biosciences. (2021). Stopping the Colorado Potato Beetle. https://www.greenlightbiosciences.com/application/stopping-the-colorado-potato-beetle/

Gregory, R., Chendrimada, T., Cooch, N., Shiekhattar, R. (2005). Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing. Cell, 123: 631–640. DOI: https://doi.org/10.1016/j.cell.2005.10.022

Guo, Z., Li, Y., & Ding, S. W. (2018). Small RNA-based antimicrobial immunity. Nature Reviews Immunology, 19(1), 31–44. https://doi.org/10.1038/s41577-018-0071-x DOI: https://doi.org/10.1038/s41577-018-0071-x

Gupta, B., Saha, J., Sengupta, A., & Gupta, K. (2013). Recent Advances on Virus Induced Gene Silencing (VIGS): Plant Functional Genomics. J Plant Biochem Physiol 1 (5):1000e116. doi: 10.4172/2329-9029.1000e116 DOI: https://doi.org/10.4172/2329-9029.1000e116

Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R., & Hannon, G.J. (2001). Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 293 (5532), 1146-50. DOI: https://doi.org/10.1126/science.1064023

Hannon GJ. (2002). RNA interference. Nature. 11:418(6894): 244-51. doi: PMID: 12110901. DOI: https://doi.org/10.1038/418244a

Höfle, L., Biedenkopf, D., Werner, B. T., Shrestha, A., Jelonek, L., & Koch, A. (2020). Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes. RNA Biology, 17(4), 463–473. https://doi.org/10.1080/15476286.2019.1700033 DOI: https://doi.org/10.1080/15476286.2019.1700033

Huanong No. 1 | GM Approval Database- ISAAA.org. (s. f.). ISAAA. https://www.isaaa.org/gmapprovaldatabase/event/default.asp?EventID=229&Event=Huanong%20No.%201

Hutvagner, G., & Simard, M. J. (2008). Argonaute proteins: key players in RNA silencing. Nature Reviews Molecular Cell Biology 2008, 9(1), 22–32. https://doi.org/10.1038/nrm2321 DOI: https://doi.org/10.1038/nrm2321

Huvenne, H. & Smagghe, G. (2010). Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56(3): 227-35. DOI: 10.1016/j.jinsphys.2009.10.004 DOI: https://doi.org/10.1016/j.jinsphys.2009.10.004

Jain, R. G., Robinson, K. E., Asgari, S., & Mitter, N. (2020). Current scenario of RNAi ‐based hemipteran control. Pest Management Science, 77(5), 2188–2196. https://doi.org/10.1002/ps.6153 DOI: https://doi.org/10.1002/ps.6153

Jalaluddin N., Othman R., & Harikrishna J. (2018) H Global trends in research and commercialization of exogenous and endogenous RNAi technologies for crops. Critical Reviews in Biotechnology. 39(1), 67–78 https://doi.org/10.1080/07388551.2018.1496064 DOI: https://doi.org/10.1080/07388551.2018.1496064

Jin, Y., Zhao, J. H., & Guo, H. S. (2021). Recent advances in understanding plant antiviral RNAi and viral suppressors of RNAi. Current Opinion in Virology, 46, 65–72. https://doi.org/10.1016/J.COVIRO.2020.12.001 DOI: https://doi.org/10.1016/j.coviro.2020.12.001

Kaldis, A., Berbati, M., Melita, O., Reppa, C., Holeva, M., Otten, P., & Voloudakis, A. (2017). Exogenously applied dsRNA molecules deriving from the Zucchini yellow mosaic virus (ZYMV) genome move systemically and protect cucurbits against ZYMV. Molecular Plant Pathology, 19(4), 883–895. https://doi.org/10.1111/mpp.12572 DOI: https://doi.org/10.1111/mpp.12572

Khajuria, C., Ivashuta, S., Wiggins, E., Flagel, L., Moar, W., Pleau, M., Miller, K., Zhang, Y., Ramaseshadri, P., Jiang, C., Hodge, T., Jensen, P., Chen, M., Gowda, A., McNulty, B., Vazquez, C., Bolognesi, R., Haas, J., Head, G., & Clark, T. (2018). Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLOS ONE, 13(5), e0197059. https://doi.org/10.1371/journal.pone.0197059 DOI: https://doi.org/10.1371/journal.pone.0197059

Kidner, C.A., & Martienssen, R.A. (2005). The developmental role of microRNA in plants. Current Opinion in Plant Biology 8:38-44. DOI: https://doi.org/10.1016/j.pbi.2004.11.008

Koch, A., & Kogel, K.H. (2014). New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnol J.; 12(7):821-31. doi: 10.1111/pbi.12226. DOI: https://doi.org/10.1111/pbi.12226

Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., Linicus, L., Johannsmeier, J., Jelonek, L., Goesmann, A., Cardoza, V., McMillan, J., Mentzel, T., & Kogel, K. H. (2016). An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLOS Pathogens, 12(10). https://doi.org/10.1371/journal.ppat.1005901 DOI: https://doi.org/10.1371/journal.ppat.1005901

Konakalla, N.C.; Kaldis, A.; Berbati, M.; Masarapu, H.; Voloudakis, A. (2016) Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco. Planta, 244, 961–969. DOI: https://doi.org/10.1007/s00425-016-2567-6

Kourti, A., Swevers, L., & Kontogiannatos, D. (2017). In search of new methodologies for efficient insect pest control: “The RNAi ‘Movement’”. En V. Shields (Ed.), Biological control of pest and vector insects, InTech. DOI: https://doi.org/10.5772/66633

Kurihara, Y., & Watanabe, Y. (2004). Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12753–12758. https://doi.org/10.1073/pnas.0403115101 DOI: https://doi.org/10.1073/pnas.0403115101

Li, F., & Wang, A. (2019). RNA-Targeted Antiviral Immunity: More Than Just RNA Silencing. Trends in Microbiology, 27(9), 792–805. https://doi.org/10.1016/j.tim.2019.05.007 DOI: https://doi.org/10.1016/j.tim.2019.05.007

Liu, S., Jaouannet, M., Dempsey, D. A., Imani, J., Coustau, C., & Kogel, K. H. (2020). RNA-based technologies for insect control in plant production. Biotechnology Advances, 39, 107463. https://doi.org/10.1016/j.biotechadv.2019.107463 DOI: https://doi.org/10.1016/j.biotechadv.2019.107463

Marrone, P. G. (2019). Pesticidal natural products – status and future potential. Pest Management Science. Published. https://doi.org/10.1002/ps.5433 DOI: https://doi.org/10.1002/ps.5433

Matzke, M., Aufsatz, W., Kanno, T., Daxinger, L., Papp, I., Mette, M. F., & Matzke, A. J. (2004). Genetic analysis of RNA-mediated transcriptional gene silencing. Biochimica et biophysica acta, 1677(1-3), 129–141. https://doi.org/10.1016/j.bbaexp.2003.10.015 DOI: https://doi.org/10.1016/j.bbaexp.2003.10.015

McLoughlin, A. G., Wytinck, N., Walker, P. L., Girard, I. J., Rashid, K. Y., de Kievit, T., Fernando, W. G. D., Whyard, S., & Belmonte, M. F. (2018). Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Scientific Reports, 8 (1), 1–14. https://doi.org/10.1038/s41598-018-25434-4 DOI: https://doi.org/10.1038/s41598-018-25434-4

Mehlhorn, S. G., Geibel, S., Bucher, G., & Nauen, R. (2020). Profiling of RNAi sensitivity after foliar dsRNA exposure in different European populations of Colorado potato beetle reveals a robust response with minor variability. Pesticide Biochemistry and Physiology, 166, 104569. https://doi.org/10.1016/j.pestbp.2020.104569 DOI: https://doi.org/10.1016/j.pestbp.2020.104569

Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R.G., Taochy, C., Xu, Z. P. (2017). Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3(2), 1-10. doi:10.1038/nplants.2016.207 DOI: https://doi.org/10.1038/nplants.2016.207

Napoli, C., Lemieux, C., & Jorgensen, R. (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans., The Plant Cell, 2 (4), 279–289, https://doi.org/10.1105/tpc.2.4.279 DOI: https://doi.org/10.2307/3869076

Niehl, A., Soininen, M., Poranen, M., Heinlein, M. (2018). Synthetic biology approach for plant protection using dsRNA. Plant Biotechnology Journal, 16(9), 1679–1687. https://doi.org/10.1111/PBI.12904 DOI: https://doi.org/10.1111/pbi.12904

Niu, X., Kassa, A., Hu, X., Robeson, J., McMahon, M., Richtman, N. M., Steimel, J. P., Kernodle, B. M., Crane, V. C., Sandahl, G., Ritland, J. L., Presnail, J. K., Lu, A. L., & Wu, G. (2017). Control of Western Corn Rootworm (Diabrotica virgifera virgifera) Reproduction through Plant-Mediated RNA Interference. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-12638-3 DOI: https://doi.org/10.1038/s41598-017-12638-3

Osorio-Guarín, J. A., García-Arias, F. L., & Yockteng, R. (2019). Virus-induced gene silencing (VIGS) in cape gooseberry (Physalis peruviana L., Solanaceae). Universitas Scientiarum, 24(1), 111–133. https://doi.org/10.11144/javeriana.sc24-1.vigs DOI: https://doi.org/10.11144/Javeriana.SC24-1.vigs

Ozata, D.M., Gainetdinov, I., Zoch, A., O'Carroll, D., Zamore, P.D (2019). PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet., 20(2): 89-108. doi: 10.1038/s41576-018-0073-3. DOI: https://doi.org/10.1038/s41576-018-0073-3

Papić, L., García, K., & Romero, J. (2015) Avances y limitaciones en el uso de los dsRNA como estrategias de control y prevención de enfermedades virales en sistemas acuícolas. Lat. Am. J. Aquat. Res., 43(3): 388-401, 2015 DOI: 10.3856/vol43-issue3-fulltext-1 DOI: https://doi.org/10.3856/vol43-issue3-fulltext-1

Petek, M., Coll, A., Ferenc, R., Razinger, J., & Gruden, K. (2020). Validating the Potential of Double-Stranded RNA Targeting Colorado Potato Beetle Mesh Gene in Laboratory and Field Trials. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01250 DOI: https://doi.org/10.3389/fpls.2020.01250

RBMT21-129 | GM Approval Database- ISAAA.org. (s. f.). ISAAA. https://www.isaaa.org/gmapprovaldatabase/event/default.asp?EventID=202&Event=RBMT21-129

Rego-Machado, C., Nakasu, E., Silva, J., Lucinda, N., Nagata, T., & Inoue-Nagata, A. K. (2020). siRNA biogenesis and advances in topically applied dsRNA for controlling virus infections in tomato plants. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-79360-5 DOI: https://doi.org/10.1038/s41598-020-79360-5

Romano, N., & Macino, G. (1992). Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Molecular Microbiology, 6(22), 3343–3353. DOI: https://doi.org/10.1111/j.1365-2958.1992.tb02202.x

Rosa, C., Kuo, Y.W., Wuriyanghan, H. & Falk B.W. (2018). RNA interference mechanisms and applications in plant pathology. Annu Rev Phytopathol 56, 581–610. https://doi.org/10.1146/ANNUREV-PHYTO-080417-050044 DOI: https://doi.org/10.1146/annurev-phyto-080417-050044

Senthil-Kumar, M., & Mysore, K. S. (2010). RNAi in plants: recent developments and applications in agriculture. En A. Catalano (Ed.), Gene silencing: theory techniques and applications (pp. 183–199). Nova Science Publishers.

Siomi, M. C., Sato, K., Pezic, D., & Aravin, A. A. (2011). PIWI-interacting small RNAs: the vanguard of genome defence. Nature Reviews Molecular Cell Biology, 12(4), 246–258. https://doi.org/10.1038/nrm3089 DOI: https://doi.org/10.1038/nrm3089

Singh, D., Chaudhary, S., Kumar, R., Sirohi, P., Mehla, K., Sirohi, A., Kumar, S., Chand, P., & Singh, P. K. (2016). RNA Interference Technology — Applications and Limitations. En I. Abdurakhmonov. (Ed.), RNA Interference. (pp.21-36). Intech Open. https://doi.org/10.5772/61760 DOI: https://doi.org/10.5772/61760

Song, X. S., Gu, K. X., Duan, X. X., Xiao, X. M., Hou, Y. P., Duan, Y. B., Wang, J. X., Yu, N., & Zhou, M. G. (2018). Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing. Molecular plant pathology, 19(12), 2543–2560. https://doi.org/10.1111/mpp.12728 DOI: https://doi.org/10.1111/mpp.12728

Souza T., Faria J., Aragão F., Del Peloso M., Wendland A., Aguiar M., Quintela E., Melo C. (2018) Agronomic Performance and Yield Stability of the RNA Interference‐Based Bean golden mosaic virus‐Resistant Common Bean. Crop Science Volume58, Issue2 March–April 2018 Pages 579-591. DOI: https://doi.org/10.2135/cropsci2017.06.0355

Taliansky, M., Samarskaya V., Zavriev, S., Fesenko, I., Kalinina, N., & Love, A. (2021) RNA-Based Technologies for Engineering Plant Virus Resistance. Plants, 10(1). https://doi.org/10.3390/plants10010082 DOI: https://doi.org/10.3390/plants10010082

Taning, C., Arpaia, S., Christiaens, O., Dietz-Pfeilstetter, A., Jones, H., Mezzetti, B. Sabbadini, S., Sorteberg, S., Sweet, J., Ventura, V., and Smagghe, G. (2019) RNA-based biocontrol compounds: current status and perspectives to reach the market. Pest Manag Sci doi:10.1002/ps.5686 DOI: https://doi.org/10.1002/ps.5686

Tenllado, F., Martinez-Garcia, B., Vargas, M., & Diaz-Ruiz, J. R. (2003). Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnology, 3, 3. doi:10.1186/1472-6750-3-3. DOI: https://doi.org/10.1186/1472-6750-3-3

Thakur, N., Mundey, J. K., & Upadhyay, S. K. (2016). RNAi - Implications in entomological research and pest control. En I. Y. Abdurakhmonov (Ed.), rna Interference, InTech. doi:10.5772/61814 DOI: https://doi.org/10.5772/61814

Ullah F., Gul H., Wang X., Ding Q., Said F, Gao X., Desneux N., and Song, D. (2020) RNAi-Mediated Knockdown of Chitin Synthase 1 (CHS1) Gene Causes Mortality and Decreased Longevity and Fecundity in Aphis gossypii. Insects 2020, 11, 22; doi:10.3390/insects11010022 DOI: https://doi.org/10.3390/insects11010022

Vadlamudi, T., Patil, B. L., Kaldis, A., Sai Gopal, D. V. R., Mishra, R., Berbati, M., & Voloudakis, A. (2020). DsRNA-mediated protection against two isolates of Papaya ringspot virus through topical application of dsRNA in papaya. Journal of Virological Methods, 275, 113750. https://doi.org/10.1016/j.jviromet.2019.113750 DOI: https://doi.org/10.1016/j.jviromet.2019.113750

Wang, M., & Jin, H. (2017). Spray-Induced Gene Silencing: A Powerful Innovative Strategy for Crop Protection. Trends in Microbiology, 25(1), 4–6. https://doi.org/10.1016/j.tim.2016.11.011 DOI: https://doi.org/10.1016/j.tim.2016.11.011

Wang, M., Thomas, N., & Jin, H. (2017). Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Current Opinion in Plant Biology, 38, 133–141. https://doi.org/10.1016/j.pbi.2017.05.003 DOI: https://doi.org/10.1016/j.pbi.2017.05.003

Wang, M., Weiberg, A., Lin, F. M., Thomma, B. P. H. J., Huang, H. D., & Jin, H. (2016). Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature Plants, 2(10). https://doi.org/10.1038/nplants.2016.151 DOI: https://doi.org/10.1038/nplants.2016.151

Wei, L., Zhang, D., Xiang, F., & Zhang, Z. (2009). Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. International Journal of Plant Sciences, 170(8), 979–989. https://doi.org/10.1086/605122 DOI: https://doi.org/10.1086/605122

Weiberg, A., Wang, M., Lin, F. M., Zhao, H., Zhang, Z., Kaloshian, I., Huang, H. D., & Jin, H. (2013). Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 342(6154), 118–123. https://doi.org/10.1126/science.1239705 DOI: https://doi.org/10.1126/science.1239705

Whangbo, J. S., & Hunter, C. P. (2008). Environmental RNA interference. Trends in Genetics, 24(6), 297–305. https://doi.org/10.1016/J.TIG.2008.03.007 DOI: https://doi.org/10.1016/j.tig.2008.03.007

Worrall, E. A., Bravo-Cazar, A., Nilon, A. T., Fletcher, S. J., Robinson, K. E., Carr, J. P., & Mitter, N. (2019). Exogenous Application of RNAi-Inducing Double-Stranded RNA Inhibits Aphid-Mediated Transmission of a Plant Virus. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00265 DOI: https://doi.org/10.3389/fpls.2019.00265

Xu, J., Wang, X., Li, Y., Zeng, J., Wang, G., Deng, C., & Guo, W. (2018). Host-induced gene silencing of a regulator of G protein signalling gene (VdRGS1) confers resistance to Verticillium wilt in cotton. Plant Biotechnology Journal, 16(9), 1629–1643. https://doi.org/10.1111/pbi.12900 DOI: https://doi.org/10.1111/pbi.12900

Yuan, C., Wang, J., Harrison, A. P., Meng, X., Chen, D., & Chen, M. (2015). Genome-wide view of natural antisense transcripts in Arabidopsis thaliana. DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 22(3), 233. https://doi.org/10.1093/DNARES/DSV008 DOI: https://doi.org/10.1093/dnares/dsv008

Zhang, X., Mysore, K., Flannery, E., Michel, K., Severson, D. W., Zhu, K. Y., & Duman-Scheel, M. (2015). Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae. J. Vis. Exp. 97:52523. doi: 10.3791/52523 DOI: https://doi.org/10.3791/52523-v

Zhong C., Smith N.A., Zhang D., Goodfellow S., Zhang R., Shan W., Wang M.B. (2019). Full-Length Hairpin RNA Accumulates at High Levels in Yeast but Not in Bacteria and Plants. Genes (Basel) V. 10. E458. doi: 10.3390/genes1006045. DOI: https://doi.org/10.3390/genes10060458

Cómo citar

APA

Gamero, M., Toloza-Moreno, D., Belaich, M. y Barrera Cubillos, G. . P. (2022). ARN de interferencia (ARNi): una herramienta eficaz en agrobiotecnología. Revista Colombiana de Biotecnología, 24(2), 59–67. https://doi.org/10.15446/rev.colomb.biote.v24n2.99397

ACM

[1]
Gamero, M., Toloza-Moreno, D., Belaich, M. y Barrera Cubillos, G. P. 2022. ARN de interferencia (ARNi): una herramienta eficaz en agrobiotecnología. Revista Colombiana de Biotecnología. 24, 2 (dic. 2022), 59–67. DOI:https://doi.org/10.15446/rev.colomb.biote.v24n2.99397.

ACS

(1)
Gamero, M.; Toloza-Moreno, D.; Belaich, M.; Barrera Cubillos, G. . P. ARN de interferencia (ARNi): una herramienta eficaz en agrobiotecnología. Rev. colomb. biotecnol. 2022, 24, 59-67.

ABNT

GAMERO, M.; TOLOZA-MORENO, D.; BELAICH, M.; BARRERA CUBILLOS, G. . P. ARN de interferencia (ARNi): una herramienta eficaz en agrobiotecnología. Revista Colombiana de Biotecnología, [S. l.], v. 24, n. 2, p. 59–67, 2022. DOI: 10.15446/rev.colomb.biote.v24n2.99397. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/99397. Acesso em: 1 ago. 2024.

Chicago

Gamero, Maira, Deisy Toloza-Moreno, Mariano Belaich, y Gloria Patricia Barrera Cubillos. 2022. «ARN de interferencia (ARNi): una herramienta eficaz en agrobiotecnología». Revista Colombiana De Biotecnología 24 (2):59-67. https://doi.org/10.15446/rev.colomb.biote.v24n2.99397.

Harvard

Gamero, M., Toloza-Moreno, D., Belaich, M. y Barrera Cubillos, G. . P. (2022) «ARN de interferencia (ARNi): una herramienta eficaz en agrobiotecnología», Revista Colombiana de Biotecnología, 24(2), pp. 59–67. doi: 10.15446/rev.colomb.biote.v24n2.99397.

IEEE

[1]
M. Gamero, D. Toloza-Moreno, M. Belaich, y G. . P. Barrera Cubillos, «ARN de interferencia (ARNi): una herramienta eficaz en agrobiotecnología», Rev. colomb. biotecnol., vol. 24, n.º 2, pp. 59–67, dic. 2022.

MLA

Gamero, M., D. Toloza-Moreno, M. Belaich, y G. . P. Barrera Cubillos. «ARN de interferencia (ARNi): una herramienta eficaz en agrobiotecnología». Revista Colombiana de Biotecnología, vol. 24, n.º 2, diciembre de 2022, pp. 59-67, doi:10.15446/rev.colomb.biote.v24n2.99397.

Turabian

Gamero, Maira, Deisy Toloza-Moreno, Mariano Belaich, y Gloria Patricia Barrera Cubillos. «ARN de interferencia (ARNi): una herramienta eficaz en agrobiotecnología». Revista Colombiana de Biotecnología 24, no. 2 (diciembre 1, 2022): 59–67. Accedido agosto 1, 2024. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/99397.

Vancouver

1.
Gamero M, Toloza-Moreno D, Belaich M, Barrera Cubillos GP. ARN de interferencia (ARNi): una herramienta eficaz en agrobiotecnología. Rev. colomb. biotecnol. [Internet]. 1 de diciembre de 2022 [citado 1 de agosto de 2024];24(2):59-67. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/99397

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

1803

Descargas

Los datos de descargas todavía no están disponibles.