Publicado

2015-01-01

Medición de voltajes en distintas rocas durante ensayos de compresión uniáxica

Voltage build-up measurements over different rocks during uniaxial compression tests

Palabras clave:

Compresión uniáxica de rocas, Voltajes inducidos mecánicamente, Procesos sismogenéticos, Propiedades físicas de materiales terrestres, (es)
Uniaxial Compression of rocks, Seismogenetic processes, Stress-induced voltages, Pressure-estimulated currents, Physical properties of earth materials. (en)

Descargas

Autores/as

La presencia de fenómenos electromagnéticos inducidos por procesos mecánicos sobre ciertos materiales ha sido ampliamente estudiada desde el descubrimiento de la Piezoelectricidad a finales del siglo XIX. En la actualidad existe una amplia gama de modelos físicos aún en debate respecto a las observaciones de estos fenómenos en rocas y otros materiales terrestres, además de persistir controversia en relación a sus posibles aplicaciones en Sismología.

En un intento por explicar la presencia de fenómenos electromagnéticos asociados a la acumulación de esfuerzos mecánicos en la corteza terrestre, los científicos han recurrido a diversos mecanismos, tales como: el Piezomagnetismo y la Piezoelectricidad; el Efecto Magneto hidrodinámico; la Triboelectricidad; el efecto Electrocinético; Microfracturamiento y el Efecto Semiconductor, debido a la migración de vacancias positivas en rocas silicatadas a través de un gradiente de esfuerzo, entre otros.

En este texto se pretende exponer brevemente el estado del arte del estudio de estos procesos, así como generar una breve discusión en cuanto al problema y finalmente mostrar el desarrollo y resultados del experimento central realizado: Pruebas de compresión uniáxica sobre rocas de litología variable y medición de voltajes inducidos entre los extremos de las mismas por la fuerza aplicada.

Se discutirán, principalmente, detalles experimentales en relación a este tipo de ensayos para poner a prueba la validez de las mediciones obtenidas y se compararán nuestros resultados con los de otros autores. Estos ensayos están ampliamente basados en experimentos previamente reportados en la literatura (Freund 2003; Takeuchi et al. 2006, etc.) y se llevaron a cabo en los Laboratorios de Ensayos Mecánicos de la Universidad Nacional de Colombia en Bogotá entre los meses de Septiembre y Octubre de 2014.

The presence of mechanically-induced electromagnetic phenomena on certain materials has been widely studied since the discovery of Piezoelectricity by the 19th century, nevertheless, at present debate persists in relation to the physical mechanisms underlying this type of phenomena, especially when it comes to observations made on rocks and other earth materials. Moreover, a great deal of controversy arises when it comes to their possible seismological applications.

In the present text, we intend to show the development, results and final thoughts regarding a set of experiments of uniaxial compression and related electrical potential difference measurements over different types of rocks, which we performed on the basis of previous tests reported in the literature (Freund 2003; Takeuchi et al. 2006, etc.).

Our goal is to put this kind of experiments to the test, mostly by debating experimental details, from the internal state of the tested rocks (weathering, mineralogy, and so on) to the external sources of noise likely to affect the measurements. We will discuss and compare our results with those of other researchers. Additionally, and by way of compilation, we will mention the basics of some of the mechanisms proposed by different authors to explain the presence of electromagnetic (EM from now on) phenomena possibly associated to the natural build-up of stresses in the Earth’s crust. These include: Piezomagnetism and Piezoelectricity; Magnetohydrodynamic effect; Triboelectricity; Electrokinetic effect; Microfracturing and the sometimes referred to as Semiconductor effect, due to migration of positive charge vacancies (peroxy defects) in silicate materials under a stress gradient.

Referencias

AKHOONDZADEH, M., PARROT, M. & SARADJIAN, M. R. (2010): Electron and ion density variations before strong earthquakes (M>6.0) using DEMETER and GPS data. - Nat. Hazards Earth Syst. Sci, 10:7-18.

ASTM D5731-08, Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications, ASTM International, West Conshohocken, PA, 2008.

BALK, M., BOSE, M., ERTEM, G., ROGOFF, D. ROTHSCHILD, L., & FREUND, F.T. (2009): Oxidation of water to hydrogen peroxide at the rock–water interface due to stress-activated electric currents in rocks. - Earth and Planetary science letters, 283:87-92.

BATLLO, F., LEROY, R. C., PARVIN, K. & FREUND, F. (1990): Dissociation of O2 (-2) defects into paramagnetic O(-1) in wide band-gap insulators: A magnetic susceptibility study of magnesium oxide.- J. Appl. Phys. 67 (9): 5844-5846. ISSN: 0021-8979.

BELLA, F., BIAGI, P.F., CAPUTO, M., DELLA MONICA, G., ERMINI, A., MANJGALADZE, P.V., SGRIGNA, V. & ZILPIMIANI, D.O. (1995): Possible creep-related tilt precursors obtained in the central Apeninnes (Italy) and the southern Caucasus (Georgia). - Pure applied geophysics 144 (2): 277–299.

BIAGI, P.F., PICCOLO, R., ERMINI, A., MARTELLUCCI, S., BELLECCI, C., HAYAKAWA, M., CAPOZZI, V. & KINGSLEY. S.P. (2001): Possible earthquake precursors revealed by LF radio signals. -Nat. Hazards Earth Syst. Sci., 1: 99–104. http://www.nathazards-earth syst-sci.net/1/99/2001/nhess-1-99-2001.pdf

BLEIER, T., DUNSON, C., MANISCALCO, M., BRYANT, N., BAMBERY, R., & FREUND, F. (2009): Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October 2007 Alum Rock M5.4 earthquake. - Nat. Hazards Earth Syst. Sci., 9: 585–603. http://www.nat-hazards-earth-syst-sci.net/9/585/2009/nhess-9-585-2009.pdf

BOBROVSKIY, V.S. (2010): The results of subterranean electric measurements on Kamchatka as global effects of proton tectogenesis: Damaging earthquakes in Indonesia and China - In: Guarnieri, P. (ed.) Recent Progress on Earthquake Geology, p.189-248. Nova Science Publishers, Inc, New York.

CHAMBERLAIN, P.G., VAN EECKHOUT, E.M., & PODNIECKS, E.R. (1976): Four factors influencing observed rock properties. Soil Specimen Preparation for Laboratory Testing, ASTM STP 599, pp. 21-36. American Society for Testing and Materials, Philadelphia, Pa. DOI:10.1520/STP599-EB ISBN-EB: 978-0-8031-5588-6

CICERONE, ROBERT D, EBEL, JOHN E, & BRITTON, JAMES (2009): A systematic compilation of earthquake precursors. Tectonophysics, 476:371-396.

DERR, J. (1973): Earthquake lights: a review of observations and present theories. - Bulletin of the Seismological Society of America Vol. 63, 6:2177-2187. http://www.quakefinder.com/research/pdf/EarthquakeLights.pdf

DUNAJECKA, M.A. & PULINETS, S.A. (2005): Atmospheric and Thermal anomalies observed around the time of strong earthquakes in Mexico. - Atmósfera. 18 (4), 235-247. http://www.scielo.org.mx/pdf/atm/v18n4/v18n4a03.pdf

FRASER-SMITH, A.C., BERNARDI, A., MCGILL, P.R., LADD, M.E., HELLIWELL, R.A., & VILLARD, O.G. JR. (1990): Low frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake. - Geophysical research letter, 17: 1465-1468. http://ee.stanford.edu/~acfs/LomaPrietaPaper.pdf

FREUND, FRIEDEMANN T. (2000): Time-resolved study of charge generation and propagation in igneous rocks. - Journal of Geophysical Research, 105 (B5): 11,001-11,019. http://onlinelibrary.wiley.com/ doi/10.1029/1999JB900423/full

FREUND, F., (2003): On the electrical conductivity structure of the stable continental crust. - Journal of Geodynamics, 35: 353-388.

FREUND, FRIEDEMANN T., TAKEUCHI, AKIHIRO., LAU, BOBBY W.S. (2006): Electric currents streaming out of stressed igneous rocks –A step towards understanding pre-earthquake low frequency EM emissions. - Physics and Chemistry of the Earth, 31:389-396.

FREUND, F. (2011): Pre-earthquake signals: Underlying physical processes. - Journal of Asian Earth Sciences, 41:383-400.

FREUND, F. (2013): Earthquake Forewarning - A Multidisciplinary Challenge from the Ground up to Space. - Acta Geophysica, 61 (4): 775-807.

GOUSHEVA, M.N., GLAVCHEVA, R.P., DANOV, D.L., HRISTOV, P.L., KIROV, B.B. & GEORGIEVA, K.Y. (2008): Electric field and ion density anomalies in the mid latitude ionosphere: Possible connection with earthquakes? - Advances in Space Research, 46: 206-212.

GUANGMENG, G. & JIE, Y. (2013): Three attempts of earthquake prediction with satellite cloud images. - Nat. Hazards Earth Syst. Sci., 13: 91–95.

HAIMSON, B.C. (1978): Effect of Cyclic Loading on Rock. Dynamic Geotechnical Testing, ASTM STP 654, pp. 228-245. American Society for Testing and Materials, Philadelphia, Pa. DOI: 10.1520/STP654-EB. ISBN-EB: 978-0-8031-4724-9.

HATTORI, K., WADATSUMI, K., FURUYA, R., YADA, N., YAMAMOTO, I., NINAGAWA, K., IDETA, Y. & NISHIHASHI, M. (2008): Variation of Radioactive Atmospheric Ion Concentration Associated with Large Earthquakes. - Paper Presented at AGU Fall Meeting, SanFrancisco, CA. Abstract #S52A-03. http://adsabs.harvard.edu/abs/2008AGUFM.S52A..03H

HAYAKAWA, M. (2013): Possible Electromagnetic Effects on Abnormal Animal Behavior Before an Earthquake. – Animals, 3:19-32.

İNAN, S., T. AKGÜL, C. SEYIS, R. SAATÇILAR, S. BAYKUT, S. ERGINTAV, & M. BAŞ (2008): Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity. - J. Geophys. Res., 113: B03401. DOI:10.1029/2007JB005206.

JOHNSTON, M. J. S., SASAI, Y., EGBERT, G. D. & MUELLER, R. J. (2006): Seismomagnetic Effects from the Long-Awaited 28 September 2004 M 6.0 Parkfield Earthquake. - Bulletin of the Seismological Society of America, 96 (4B):206-220.

JOHNSTON, M. J. S. (2007). Seismo-Electromagnetic Effects. Gubbins, D & Herrero-Bervera, E. (eds.). Encyclopedia of Geomagnetism and Paleomagnetism, pp. 908-910, Springer Netherlands.

KAMOGAWA, M., OFURUTON, H. & OHTSUKI, Y-H. (2005): Earthquake Light: 1995 Kobe EQ in Japan. - Atmospheric Research, 76:438--444.

KERR, R. (1978): Earthquakes: Prediction proving elusive. - Science, 200 (4340): 419-421.

KHAIMOVICH, E. M. (1965): Hydraulic control of machine tools. 573p., Translation from Russian original, Mashgiz, Moscow. Pergamon Press, New York.

LEEMAN, J.R., M.M. SCUDERI, C. MARONE, D.M. SAFFER, & T. SHINBROT (2014): On the Origin and Evolution of Electrical Signals During Frictional Stick-Slip in Sheared Granular Material. - Journal of Geophysical Research, 119 (5): 4253-4268.

LIU, J. Y., Y. J. CHUO, S. J. SHAN, Y. B. TSAI, Y. I. CHEN, S. A. PULINETS, & S. B. YU (2004): Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. - Ann. Geophys., 22: 1585-1593.

MOURA, C.L., A.C. ARTUR, D.M. BONOTTO, S. GUEDES & C.D. MARTINELLI (2011): Natural radioactivity and radon exhalation rate in Brazilian igneous rocks. - Appl. Radiat. Isotopes, 69 (7): 1094-1099.

ONDOH, T. (2003): Anomalous sporadic-E layers observed before M 7.2 Hyogo-ken Nanbu earthquake; terrestrial gas emanation model. - Adv. Polar Upper Atmos. Res., 17: 96–108.

PROKHOROV, A.M. (ED.) (1970-1979): The Great Soviet Encyclopedia, 3rd Edition. “Electric Drive”. The Gale Group, Inc.

QIANG, ZU-JI., XU, XIU-DENG. & DIAN, CHANGGONG. (1991): Thermal infrared anomaly–precursor of impending earthquakes (Case 27). - Chin. Sci. Bull., 149: 159-171.

SEREBRYAKOVA, O.N., BILICHENKO, S.V., CHMYREV, V.M., PARROT, M., RAUCH, J.L., LEFEUVRE, F. & POKHOTELOV, O.A. (1992): Electromagnetic ELF radiation from earthquake regions as observed by low-altitude satellites. -Geophysical Research Letters, 19 (2):91-94.

SCOVILLE, JOHN, HERAUD, JORGE, & FREUND, FRIEDEMANN (2014): Pre-earthquake magnetic pulses. - Nat. Hazards Earth Syst. Sci. Discuss., 2: 7367– 7381.

SMIRNOV, V.B. & ZABYALOV, A.D. (2012): Seismic Response to Electromagnetic Sounding of the Earth’s Lithosphere. Izvestiya, Physics of the Solid Earth, 48 (7–8): 615–639. http://link.springer.com/article/10.1134%2FS1069351312070075(último acceso: 18/6/2015)

TAKEUCHI, A. & NAGAO, T. (2012): Verification of Hole Activation in Gabbro Blocks Subjected to Non-uniform Loading by Means of Hot Point Probe Tests. - Abstract preceeding EMSEV IUGG Inter Association 2012. Gotemba, Japan. Abstract 4-03.

TAKEUCHI, AKIHIRO, LAU, BOBBY W.S. & FREUND, FRIEDEMANN T. (2006): Current and surface potential induced by stress-activated positive holes in igneous rocks. - Physics and Chemistry of the Earth, 31: 240-247.

TRIANTIS, D., I. STAVRAKAS, C. ANASTASIADIS, A. KYRIAZOPOULOS & F. VALLIANATOS (2006): An analysis of pressure stimulated currents (PSC), in marble samples under mechanical stress. - Physics and Chemistry of the Earth, 31: 234–239.

UYEDA, SEIYA., NAGAO, TOSHIYASU., & KAMOGAWA, MASASHI. (2009): Short-term earthquake prediction: Current status of seismoelectromagnetics. - Tectonophysics, 470:205-213.

WYSS, M. (2001): Why is Earthquake prediction research not progressing faster? – Tectonophysics, 338:217-223.

ZHAO, Y.L. & QIAN, F.Y. (1994): Geoelectric precursors to strong earthquakes in China. - Tectonophysics, 233 (1-2): 99–113.

Cómo citar

APA

Peláez Quiñones, J. D., Mora Martínez, E. G., Picón García, A. F. y Varón Bernal, J. J. (2015). Medición de voltajes en distintas rocas durante ensayos de compresión uniáxica. Geología Colombiana, 40, 43–56. https://revistas.unal.edu.co/index.php/geocol/article/view/51443

ACM

[1]
Peláez Quiñones, J.D., Mora Martínez, E.G., Picón García, A.F. y Varón Bernal, J.J. 2015. Medición de voltajes en distintas rocas durante ensayos de compresión uniáxica. Geología Colombiana. 40, (ene. 2015), 43–56.

ACS

(1)
Peláez Quiñones, J. D.; Mora Martínez, E. G.; Picón García, A. F.; Varón Bernal, J. J. Medición de voltajes en distintas rocas durante ensayos de compresión uniáxica. Geología Colombiana 2015, 40, 43-56.

ABNT

PELÁEZ QUIÑONES, J. D.; MORA MARTÍNEZ, E. G.; PICÓN GARCÍA, A. F.; VARÓN BERNAL, J. J. Medición de voltajes en distintas rocas durante ensayos de compresión uniáxica. Geología Colombiana, [S. l.], v. 40, p. 43–56, 2015. Disponível em: https://revistas.unal.edu.co/index.php/geocol/article/view/51443. Acesso em: 19 abr. 2024.

Chicago

Peláez Quiñones, Julián David, Erick Giovanni Mora Martínez, Andrés Felipe Picón García, y Jenner Julián Varón Bernal. 2015. «Medición de voltajes en distintas rocas durante ensayos de compresión uniáxica». Geología Colombiana 40 (enero):43-56. https://revistas.unal.edu.co/index.php/geocol/article/view/51443.

Harvard

Peláez Quiñones, J. D., Mora Martínez, E. G., Picón García, A. F. y Varón Bernal, J. J. (2015) «Medición de voltajes en distintas rocas durante ensayos de compresión uniáxica», Geología Colombiana, 40, pp. 43–56. Disponible en: https://revistas.unal.edu.co/index.php/geocol/article/view/51443 (Accedido: 19 abril 2024).

IEEE

[1]
J. D. Peláez Quiñones, E. G. Mora Martínez, A. F. Picón García, y J. J. Varón Bernal, «Medición de voltajes en distintas rocas durante ensayos de compresión uniáxica», Geología Colombiana, vol. 40, pp. 43–56, ene. 2015.

MLA

Peláez Quiñones, J. D., E. G. Mora Martínez, A. F. Picón García, y J. J. Varón Bernal. «Medición de voltajes en distintas rocas durante ensayos de compresión uniáxica». Geología Colombiana, vol. 40, enero de 2015, pp. 43-56, https://revistas.unal.edu.co/index.php/geocol/article/view/51443.

Turabian

Peláez Quiñones, Julián David, Erick Giovanni Mora Martínez, Andrés Felipe Picón García, y Jenner Julián Varón Bernal. «Medición de voltajes en distintas rocas durante ensayos de compresión uniáxica». Geología Colombiana 40 (enero 1, 2015): 43–56. Accedido abril 19, 2024. https://revistas.unal.edu.co/index.php/geocol/article/view/51443.

Vancouver

1.
Peláez Quiñones JD, Mora Martínez EG, Picón García AF, Varón Bernal JJ. Medición de voltajes en distintas rocas durante ensayos de compresión uniáxica. Geología Colombiana [Internet]. 1 de enero de 2015 [citado 19 de abril de 2024];40:43-56. Disponible en: https://revistas.unal.edu.co/index.php/geocol/article/view/51443

Descargar cita

Visitas a la página del resumen del artículo

589

Descargas

Los datos de descargas todavía no están disponibles.