Aproximaciones al estudio de la contaminación ambiental por medicamentos identificados. Fuente: autores

Publicado

2025-10-20

Fármacos en el ambiente: aproximaciones para su estudio a través de una revisión de alcance

Pharmaceuticals in the Environment: A Scoping Review of Approaches to Their Study

DOI:

https://doi.org/10.15446/ga.v28n1.120427

Palabras clave:

Medio ambiente, Medicamento, Contaminación, Higiene ambiental, Salud pública (es)

Descargas

Autores/as

La contaminación ambiental causada por principios activos de medicamentos es una preocupación mundial que plantea riesgos para la salud pública y el ambiente. Se ha identificado la necesidad de trabajar aproximaciones que incluyan el diálogo de diversos actores sociales, teniendo en cuenta que los enfoques de gestión no cubren de manera satisfactoria las interacciones entre la sociedad y la naturaleza. Con el propósito de analizar las aproximaciones al estudio de la contaminación ambiental por medicamentos se realizó una revisión de alcance. Se emplearon diez bases de datos utilizando los términos de búsqueda: medicamento, ambiente, contaminación y salud pública. A través del análisis temático se identificaron y analizaron patrones de significado en el conjunto de publicaciones incluidas, estudiando factores manifiestos y latentes. Se empleó la extensión Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews. Fueron incluidas y analizadas 44 revisiones que cumplieron los criterios de elegibilidad. Se identificaron, describieron y analizaron 13 aproximaciones al estudio de la problemática. Se discutieron las relaciones y distinciones entre las aproximaciones y se analizaron en relación con el consumo excesivo de medicamentos. Existe la necesidad de trabajo interdisciplinar para abordar este problema complejo. A través del análisis de las aproximaciones al estudio de la contaminación ambiental por medicamentos se reconoce la importancia de los enfoques actuales, así como vacíos en el conocimiento, en la integración de las distintas aproximaciones y la ausencia de aspectos sociales. Se identificaron oportunidades de investigación.

Environmental pollution caused by active pharmaceutical ingredients is a global concern that poses risks to public health and the environment. The need to develop approaches that include dialogue with various social actors has been identified, considering that management approaches do not satisfactorily address the interactions between society and nature. A scoping review was conducted to analyze approaches to the study of environmental pollution caused by medications. Ten databases were searched using the search terms: pharmaceutical, environment, pollution, and public health. Thematic analysis was used to identify and analyze patterns of meaning in the included publications, studying manifest and latent factors. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews was used. Forty-four reviews that met the eligibility criteria were included and analyzed. Thirteen approaches to the study of the problem were identified, described, and analyzed. The relationships and distinctions among the approaches were discussed, and their relation to excessive medication use was analyzed. There is a need for interdisciplinary work to address this complex problem. Through the analysis of approaches to the study of environmental contamination by medications, the importance of current approaches is recognized, as well as gaps in knowledge, in the integration of different approaches, and the absence of social aspects. Research opportunities were identified.

Referencias

[1] M. Ortúzar, M. Esterhuizen, D. R. Olicón-Hernández, J. González-López, y E. Aranda, “Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems.”, Front. Microbiol., vol. 13, p. 869332, abr. 2022, doi: 10.3389/fmicb.2022.869332.

[2] M. K. Nguyen et al., “Occurrence, fate, and potential risk of pharmaceutical pollutants in agriculture: Challenges and environmentally friendly solutions”, Sci. Total Environ., vol. 899, p. 165323, nov. 2023, doi: 10.1016/J.SCITOTENV.2023.165323.

[3] T. H. Miller, N. R. Bury, S. F. Owen, J. I. MacRae, y L. P. Barron, “A review of the pharmaceutical exposome in aquatic fauna”, Environ. Pollut., vol. 239, pp. 129–146, ago. 2018, doi: 10.1016/J.ENVPOL.2018.04.012.

[4] R. B. de Souza y J. R. Guimarães, “Effects of Avermectins on the Environment Based on Its Toxicity to Plants and Soil Invertebrates-a Review”, Water, Air, Soil Pollut., vol. 233, p. 259, 2022, doi: 10.1007/s11270-022-05744-0.

[5] K. E. Arnold, A. R. Brown, G. T. Ankley, y J. P. Sumpter, “Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystems”, Philos. Trans. R. Soc. B Biol. Sci., vol. 369, núm. 1656, nov. 2014, doi: 10.1098/rstb.2013.0569.

[6] N. Morin-Crini et al., “Worldwide cases of water pollution by emerging contaminants: a review”, Environ. Chem. Lett., vol. 20, núm. 4, pp. 2311–2338, ago. 2022, doi: 10.1007/S10311-022-01447-4.

[7] L. W. John et al., “Pharmaceutical pollution of the world’s rivers”, Proc. Natl. Acad. Sci., vol. 119, p. e2113947119, 2022.

[8] K. Styszko, J. Durak, B. Kończak, M. Głodniok, y A. Borgulat, “The impact of sewage sludge processing on the safety of its use”, Sci. Rep., vol. 12, núm. 1, dic. 2022, doi: 10.1038/S41598-022-16354-5.

[9] D. Kucharski et al., “The assessment of environmental risk related to the occurrence of pharmaceuticals in bottom sediments of the Odra River estuary (SW Baltic Sea)”, Sci. Total Environ., vol. 828, p. 154446, 2022, doi: https://doi.org/10.1016/j.scitotenv.2022.154446.

[10] A. D. McEachran et al., “Antibiotics, bacteria, and antibiotic resistance genes: Aerial transport from cattle feed yards via particulate matter”, Environ. Health Perspect., vol. 123, núm. 4, pp. 337–343, 2015, doi: 10.1289/ehp.1408555.

[11] R. Kumar et al., “A review on emerging water contaminants and the application of sustainable removal technologies”, Case Stud. Chem. Environ. Eng., vol. 6, p. 100219, dic. 2022, doi: 10.1016/J.CSCEE.2022.100219.

[12] S. R. Ratchnashree et al., “Advanced technologies for the determination of quantitative structure-activity relationships and degradation efficiency of micropollutants and their removal in water – A review”, Sci. Total Environ., vol. 904, p. 166563, 2023, doi: https://doi.org/10.1016/j.scitotenv.2023.166563.

[13] M. P. Kusturica, M. Jevtic, y J. T. Ristovski, “Minimizing the environmental impact of unused pharmaceuticals: Review focused on prevention”, Front. Environ. Sci., vol. 10, 2022, doi: 10.3389/fenvs.2022.1077974.

[14] J. C. G. Sousa, A. R. Ribeiro, M. O. Barbosa, M. F. R. Pereira, y A. M. T. Silva, “A review on environmental monitoring of water organic pollutants identified by EU guidelines”, J. Hazard. Mater., vol. 344, pp. 146–162, feb. 2018, doi: 10.1016/J.JHAZMAT.2017.09.058.

[15] M. Mezzelani y F. Regoli, “The Biological Effects of Pharmaceuticals in the Marine Environment”, Ann. Rev. Mar. Sci., vol. 14, núm. May, pp. 105–128, ene. 2022, doi: 10.1146/annurev-marine-040821-075606.

[16] P. Babuji, S. Thirumalaisamy, K. Duraisamy, y G. Periyasamy, “Human Health Risks due to Exposure to Water Pollution: A Review”, Water 2023, Vol. 15, Page 2532, vol. 15, núm. 14, p. 2532, jul. 2023, doi: 10.3390/W15142532.

[17] W. M. Warren-Vega, A. Campos-Rodríguez, A. I. Zárate-Guzmán, y L. A. Romero-Cano, “A Current Review of Water Pollutants in American Continent: Trends and Perspectives in Detection, Health Risks, and Treatment Technologies”, Int. J. Environ. Res. Public Health, vol. 20, núm. 5, p. 4499, mar. 2023, doi: 10.3390/IJERPH20054499/S1.

[18] J. L. Wilkinson et al., “Pharmaceutical pollution of the world’s rivers”, Proc. Natl. Acad. Sci. U. S. A., vol. 119, núm. 8, feb. 2022, doi: 10.1073/PNAS.2113947119.

[19] O. I. González Peña, M. Á. López Zavala, y H. Cabral Ruelas, “Pharmaceuticals market, consumption trends and disease incidence are not driving the pharmaceutical research on water and wastewater”, Int. J. Environ. Res. Public Health, vol. 18, núm. 5, pp. 1–37, 2021, doi: 10.3390/ijerph18052532.

[20] F. Thomas y M. Depledge, “Medicine ‘misuse’: Implications for health and environmental sustainability”, Soc. Sci. Med., vol. 143, pp. 81–87, 2015, doi: 10.1016/j.socscimed.2015.08.028.

[21] B. Gworek, M. Kijeńska, J. Wrzosek, y M. Graniewska, “Pharmaceuticals in the Soil and Plant Environment: a Review”, Water. Air. Soil Pollut., vol. 232, núm. 4, 2021, doi: 10.1007/s11270-020-04954-8.

[22] L. Wöhler, G. Niebaum, M. Krol, y A. Y. Hoekstra, “The grey water footprint of human and veterinary pharmaceuticals”, Water Res. X, vol. 7, p. 11, 2020, doi: 10.1016/j.wroa.2020.100044.

[23] K. Kümmerer, “Pharmaceuticals in the Environment”, Annu. Rev. Environ. Resour., vol. 35, núm. 1, pp. 57–75, 2010, doi: https://doi.org/10.1146/annurev-environ-052809-161223.

[24] N. Morin-Crini et al., “Worldwide cases of water pollution by emerging contaminants: a review”, Environ. Chem. Lett. 2022 204, vol. 20, núm. 4, pp. 2311–2338, abr. 2022, doi: https://doi.org/10.1007/s10311-022-01447-4.

[25] A. Ulvi, S. Aydın, y M. E. Aydın, “Fate of selected pharmaceuticals in hospital and municipal wastewater effluent: occurrence, removal, and environmental risk assessment.”, Environ. Sci. Pollut. Res. Int., vol. 29, núm. 50, pp. 75609–75625, oct. 2022, doi: 10.1007/s11356-022-21131-y.

[26] R. Kıdak y Ş. Doğan, “Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water”, Ultrason. Sonochem., vol. 40, pp. 131–139, ene. 2018, doi: 10.1016/J.ULTSONCH.2017.01.033.

[27] M. Miettinen y S. A. Khan, “Pharmaceutical pollution: A weakly regulated global environmental risk”, Rev. Eur. Comp. Int. Environ. Law, vol. 31, núm. 1, pp. 75–88, 2022, doi: 10.1111/reel.12422.

[28] T. aus der Beek et al., “Pharmaceuticals in the environment--Global occurrences and perspectives”, Environ. Toxicol. Chem., vol. 35, núm. 4, pp. 823–835, abr. 2016, doi: 10.1002/etc.3339.

[29] OECD, Pharmaceutical Residues in Freshwater: Hazards and Policy Responses. en OECD Studies on Water. Paris: OECD Publishing, 2019. doi: https://doi.org/10.1787/c936f42d-en.

[30] C. Völker, J. Kramm, H. Kerber, E. Schramm, M. Winker, y M. Zimmermann, “More than a potential hazard-approaching risks from a social-ecological perspective”, Sustain., vol. 9, núm. 7, 2017, doi: 10.3390/su9071039.

[31] F. Thomas, “Pharmaceutical waste in the environment: a cultural perspective”, Public Heal. Panor., vol. 03, núm. 01, pp. 127–132, 2017.

[32] J. G. Orozco Díaz, “De la farmacovigilancia al monitoreo crítico de los medicamentos. El proceso de registro de medicamentos en Colombia 2006”, Universidad Nacional de Colombia, 2012.

[33] D. da S. Barcellos, M. Procopiuck, y H. A. Bollmann, “Management of pharmaceutical micropollutants discharged in urban waters: 30 years of systematic review looking at opportunities for developing countries”, Sci. Total Environ., vol. 809, p. 151128, 2022, doi: https://doi.org/10.1016/j.scitotenv.2021.151128.

[34] M. Caban y P. Stepnowski, “How to decrease pharmaceuticals in the environment? A review”, Environ. Chem. Lett., vol. 19, núm. 4, pp. 3115–3138, 2021, doi: 10.1007/s10311-021-01194-y.

[35] Z. Munn, M. D. J. Peters, C. Stern, C. Tufanaru, A. McArthur, y E. Aromataris, “Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach”, Med. Res. Methodol., vol. 18, núm. 143, p. 7, 2018, doi: https://doi.org/10.1186/s12874-018-0611-x.

[36] H. Arksey y L. O’Malley, “Scoping studies: Towards a methodological framework”, Int. J. Soc. Res. Methodol. Theory Pract., vol. 8, núm. 1, pp. 19–32, 2005, doi: 10.1080/1364557032000119616.

[37] C. G. Daughton, “Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis”, Sci. Total Environ., vol. 562, pp. 391–426, ago. 2016, doi: 10.1016/j.scitotenv.2016.03.109.

[38] A. C. Tricco et al., “PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation”, Ann. Intern. Med., vol. 169, núm. 7, pp. 467–473, 2018, doi: 10.7326/M18-0850.

[39] M. D. J. Peters et al., “Updated methodological guidance for the conduct of scoping reviews”, JBI Evid. Synth., vol. 18, núm. 10, pp. 2119–2126, 2020, doi: 10.11124/JBIES-20-00167.

[40] V. Clarke y V. Braun, “Thematic analysis”, J. Posit. Psychol., vol. 12, núm. 3, pp. 297–298, 2017, doi: 10.1080/17439760.2016.1262613.

[41] M. Naeem, W. Ozuem, K. Howell, y S. Ranfagni, “A Step-by-Step Process of Thematic Analysis to Develop a Conceptual Model in Qualitative Research”, Int. J. Qual. Methods, vol. 22, núm. October, pp. 1–18, 2023, doi: 10.1177/16094069231205789.

[42] V. Braun y V. Clarke, “Using thematic analysis in psychology”, Qual. Res. Psychol., vol. 3, núm. 2, pp. 77–101, 2006, doi: 10.1191/1478088706qp063oa.

[43] H. Joffe, “Thematic Analysis”, en Qualitative Research Methods in Mental Health and Psychotherapy: A Guide for Students and Practitioners, D. Harper y A. R. Thompson, Eds., 2011, pp. 209–223. doi: 10.1002/9781119973249.ch15.

[44] J. Thomas y A. Harden, “Methods for the thematic synthesis of qualitative research in systematic reviews”, BMC Med. Res. Methodol., vol. 8, núm. 1, pp. 1–10, jul. 2008, doi: 10.1186/1471-2288-8-45/FIGURES/2.

[45] A. Nichols, V. Maynard, B. Goodman, y J. Richardson, “Health, Climate Change and Sustainability: A systematic Review and Thematic Analysis of the Literature”, Environ. Health Insights, vol. 3, 2009, doi: 10.4137/EHI.S3003.

[46] M. Salm, M. Ali, M. Minihane, y P. Conrad, “Defining global health: Findings from a systematic review and thematic analysis of the literature”, BMJ Glob. Heal., vol. 6, núm. 6, 2021, doi: 10.1136/bmjgh-2021-005292.

[47] A. Castleberry y A. Nolen, “Thematic analysis of qualitative research data: Is it as easy as it sounds?”, Curr. Pharm. Teach. Learn., vol. 10, núm. 6, pp. 807–815, 2018, doi: 10.1016/j.cptl.2018.03.019.

[48] M. J. Page et al., “Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas”, Rev. Española Cardiol., vol. 74, núm. 9, pp. 790–799, 2021, doi: 10.1016/j.recesp.2021.06.016.

[49] M. Pirsaheb, H. Hossaini, y H. Janjani, “An overview on ultraviolet persulfate based advances oxidation process for removal of antibiotics from aqueous solutions: a systematic review”, Desalin. WATER Treat., vol. 165, pp. 382–395, 2019, doi: 10.5004/dwt.2019.24559.

[50] M. Hejna, D. Kapuścińska, y A. Aksmann, “Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae”, Int. J. Environ. Res. Public Health, vol. 19, núm. 13, jul. 2022, doi: 10.3390/ijerph19137717.

[51] M. Ashraf, S. Z. Ahammad, y S. Chakma, “Advancements in the dominion of fate and transport of pharmaceuticals and personal care products in the environment-a bibliometric study.”, Environ. Sci. Pollut. Res. Int., vol. 30, núm. 23, pp. 64313–64341, may 2023, doi: 10.1007/s11356-023-26796-7.

[52] R. B. González-González et al., “Persistence, environmental hazards, and mitigation of pharmaceutically active residual contaminants from water matrices”, Sci. Total Environ., vol. 821, may 2022, doi: 10.1016/j.scitotenv.2022.153329.

[53] V. W. P. da Silva, K. L. Figueira, F. G. da Silva, G. S. Zagui, y M. S. C. Meschede, “Descarte de medicamentos e os impactos ambientais: uma revisão integrativa da literatura TT - Disposal of drugs and the ensuing environmental impacts: an integrative review of the literature”, Ciência & Saúde Coletiva, vol. 28, núm. 4, pp. 1113–1123, 2023, doi: 10.1590/1413-81232023284.05752022.

[54] I. B. B. Gomes, J.-Y. Maillard, L. C. C. Simões, y M. Simões, “Emerging contaminants affect the microbiome of water systems—strategies for their mitigation”, npj Clean Water, vol. 3, núm. 1, 2020, doi: 10.1038/s41545-020-00086-y.

[55] S. Fekadu, E. Alemayehu, R. Dewil, y B. Van der Bruggen, “Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge”, Sci. Total Environ., vol. 654, pp. 324–337, 2019, doi: 10.1016/j.scitotenv.2018.11.072.

[56] I. Pinto, M. Simões, y I. B. B. I. B. Gomes, “An Overview of the Impact of Pharmaceuticals on Aquatic Microbial Communities”, Antibiotics, vol. 11, núm. 12, p. 1700, 2022, doi: 10.3390/antibiotics11121700.

[57] P. Chaturvedi et al., “Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants”, Environ. Res., vol. 194, núm. 110664, pp. 1–17, mar. 2021, doi: 10.1016/j.envres.2020.110664.

[58] P. Branchet, L. Arpin-Pont, A. Piram, P. Boissery, P. Wong-Wah-Chung, y P. Doumenq, “Pharmaceuticals in the marine environment: What are the present challenges in their monitoring?”, Sci. Total Environ., vol. 766, p. 142644, abr. 2021, doi: 10.1016/j.scitotenv.2020.142644.

[59] A. H. Khan et al., “Impact, disease outbreak and the eco-hazards associated with pharmaceutical residues: a Critical review”, Int. J. Environ. Sci. Technol., vol. 19, núm. 1, pp. 677–688, ene. 2022, doi: 10.1007/s13762-021-03158-9.

[60] A. Pereira, L. Silva, C. Laranjeiro, C. Lino, y A. Pena, “Selected Pharmaceuticals in Different Aquatic Compartments: Part II—Toxicity and Environmental Risk Assessment”, Molecules, vol. 25, núm. 8, p. 31, abr. 2020, doi: 10.3390/molecules25081796.

[61] A. Husain Khan, H. Abdul Aziz, P. Palaniandy, M. Naushad, E. Cevik, y S. Zahmatkesh, “Pharmaceutical residues in the ecosystem: Antibiotic resistance, health impacts, and removal techniques”, Chemosphere, vol. 339, p. 139647, oct. 2023, doi: 10.1016/J.CHEMOSPHERE.2023.139647.

[62] H. K. Khan, M. Y. A. Rehman, y R. N. Malik, “Fate and toxicity of pharmaceuticals in water environment: An insight on their occurrence in South Asia”, J. Environ. Manage., vol. 271, núm. 111030, pp. 1–19, 2020, doi: 10.1016/j.jenvman.2020.111030.

[63] A. Kock, H. C. Glanville, A. C. Law, T. Stanton, L. J. Carter, y J. C. Taylor, “Emerging challenges of the impacts of pharmaceuticals on aquatic ecosystems: A diatom perspective”, Sci. Total Environ., vol. 878, p. 162939, jun. 2023, doi: https://doi.org/10.1016/j.scitotenv.2023.162939.

[64] N. A. A. Khairul Hasni et al., “Occurrence of endocrine disruptors in Malaysia’s water systems: A scoping review”, Environ. Pollut., vol. 324, núm. 121095, 2023, doi: 10.1016/j.envpol.2023.121095.

[65] K. D. D. Daniels et al., “A review of extraction methods for the analysis of pharmaceuticals in environmental waters”, Crit. Rev. Environ. Sci. Technol., vol. 50, núm. 21, pp. 2271–2299, ene. 2020, doi: 10.1080/10643389.2019.1705723.

[66] I. O. Sanusi, G. O. Olutona, I. G. Wawata, y H. Onohuean, “Occurrence, environmental impact and fate of pharmaceuticals in groundwater and surface water: a critical review”, Environ. Sci. Pollut. Res. Int., vol. 30, núm. 39, pp. 90595–90614, ago. 2023, doi: 10.1007/s11356-023-28802-4.

[67] M. Narayanan et al., “Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem”, Environ. Pollut., vol. 300, p. 118922, 2022, doi: https://doi.org/10.1016/j.envpol.2022.118922.

[68] N. Hashim, A. Yuzir, F. F. Al-Qaim, y N. K. E. M. Yahaya, “Occurrence and Distribution of 17 Targeted Human Pharmaceuticals in Various Aquatic Environmental Matrices in Southeast Asia with Particular Reference to Malaysia: A Comprehensive Review”, J. Mex. Chem. Soc., vol. 65, núm. 3, pp. 434–456, 2021, doi: 10.29356/jmcs.v65i3.1487.

[69] U. Szymańska et al., “Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives”, Microchem. J., vol. 147, pp. 729–740, jun. 2019, doi: 10.1016/j.microc.2019.04.003.

[70] O. Miarov, A. Tal, y D. Avisar, “A critical evaluation of comparative regulatory strategies for monitoring pharmaceuticals in recycled wastewater”, J. Environ. Manage., vol. 254, núm. Article 109794, 2020, doi: 10.1016/j.jenvman.2019.109794.

[71] M. Valdez-Carrillo, L. Abrell, J. Ramírez-Hernández, J. A. Reyes-López, y C. Carreón-Diazconti, “Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review.”, Environ. Sci. Pollut. Res. Int., vol. 27, núm. 36, pp. 44863–44891, dic. 2020, doi: 10.1007/s11356-020-10842-9.

[72] J. D. Megale y D. De Souza, “New approaches in antibiotics detection: The use of square wave voltammetry”, J. Pharm. Biomed. Anal., vol. 234, 2023, doi: 10.1016/j.jpba.2023.115526.

[73] A. Kotwani, J. Joshi, y D. Kaloni, “Pharmaceutical effluent: a critical link in the interconnected ecosystem promoting antimicrobial resistance”, Environ. Sci. Pollut. Res. Int., abr. 2021, doi: 10.1007/s11356-021-14178-w.

[74] A. Mojiri, J. L. Zhou, H. Ratnaweera, S. Rezania, y M. Nazari V, “Pharmaceuticals and personal care products in aquatic environments and their removal by algae-based systems.”, Chemosphere, vol. 288, núm. Pt 2, p. 132580, feb. 2022, doi: 10.1016/j.chemosphere.2021.132580.

[75] M. A. Chia et al., “Susceptibility of phytoplankton to the increasing presence of active pharmaceutical ingredients (APIs) in the aquatic environment: A review.”, Aquat. Toxicol., vol. 234, p. 105809, may 2021, doi: 10.1016/j.aquatox.2021.105809.

[76] A. Zakari-Jiya, C. Frazzoli, C. N. Obasi, B. B. Babatunde, K. C. Patrick-Iwuanyanwu, y O. E. Orisakwe, “Pharmaceutical and personal care products as emerging environmental contaminants in Nigeria: A systematic review.”, Environ. Toxicol. Pharmacol., vol. 94, p. 103914, ago. 2022, doi: 10.1016/j.etap.2022.103914.

[77] M. B. M. B. Kurade, Y.-H. Y. H. Ha, J.-Q. J. Q. Xiong, S. P. S. P. Govindwar, M. Jang, y B. H. B.-H. Jeon, “Phytoremediation as a green biotechnology tool for emerging environmental pollution: A step forward towards sustainable rehabilitation of the environment”, Chem. Eng. J., vol. 415, p. 129040, 2021, doi: 10.1016/j.cej.2021.129040.

[78] M. Hossein, R. Asha, R. Bakari, N. F. Islam, G. Jiang, y H. Sarma, “Exploring eco-friendly approaches for mitigating pharmaceutical and personal care products in aquatic ecosystems: A sustainability assessment.”, Chemosphere, vol. 316, p. 137715, mar. 2023, doi: 10.1016/j.chemosphere.2022.137715.

[79] H. Wang, H. Xi, L. Xu, M. Jin, W. Zhao, y H. Liu, “Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review”, Sci. Total Environ., vol. 788, 2021, doi: 10.1016/j.scitotenv.2021.147819.

[80] A. Yadav, E. R. Rene, M. K. Mandal, y K. K. Dubey, “Threat and sustainable technological solution for antineoplastic drugs pollution: Review on a persisting global issue”, Chemosphere, vol. 263, p. 128285, 2021, doi: 10.1016/j.chemosphere.2020.128285.

[81] W. Gwenzi, T. T. T. Simbanegavi, y P. Rzymski, “Household Disposal of Pharmaceuticals in Low-Income Settings: Practices, Health Hazards, and Research Needs”, Water (Switzerland), vol. 15, núm. 3, 2023, doi: 10.3390/w15030476.

[82] OMS, “Una sola salud”. Consultado: el 8 de febrero de 2025. [En línea]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/one-health

[83] OMS, “El grupo tripartito y el PNUMA respaldan la definición de «Una sola salud» proporcionada por el Cuadro de Expertos de Alto Nivel para el Enfoque de «Una sola salud»”. Consultado: el 19 de enero de 2025. [En línea]. Disponible en: https://www.who.int/es/news/item/01-12-2021-tripartite-and-unep-support-ohhlep-s-definition-of-one-health

[84] V. W. Palhares da Silva, K. Lopes Figueira, F. Garcez da Silva, G. Sgobbi Zagui, y M. Smidt Meschede, “Descarte de medicamentos e os impactos ambientais: uma revisão integrativa da literatura”, Cien. Saude Colet., vol. 28, núm. 4, pp. 1113–1123, 2023, doi: 10.1590/1413-81232023284.05752022.

[85] S. Bieber, T. Rauch-Williams, y J. E. Drewes, “An Assessment of International Management Strategies for CECs in Water”, ACS Symp. Ser., vol. 1241, pp. 11–22, 2016, doi: 10.1021/BK-2016-1241.CH002.

[86] B. D. Blair, “Potential Upstream Strategies for the Mitigation of Pharmaceuticals in the Aquatic Environment: a Brief Review.”, Curr. Environ. Heal. reports, vol. 3, núm. 2, pp. 153–160, jun. 2016, doi: 10.1007/s40572-016-0088-x.

[87] WHO, “The world medicines situation 2011”. World Health Organization, Geneve, 2011.

[88] Z. Fallah et al., “Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials”, Chemosphere, vol. 275, jul. 2021, doi: 10.1016/J.CHEMOSPHERE.2021.130055.

[89] D. Chambers, L. Preston, M. Clowes, A. J. Cantrell, y E. C. Goyder, “Pharmacist-led primary care interventions to promote medicines optimisation and reduce overprescribing: a systematic review of UK studies and initiatives”, BMJ Open, vol. 14, núm. 8, p. e081934, ago. 2024, doi: 10.1136/BMJOPEN-2023-081934.

[90] D. J. Caldwell, F. Mastrocco, L. Margiotta-Casaluci, y B. W. Brooks, “An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research.”, Chemosphere, vol. 115, núm. 1, pp. 4–12, 2014, doi: 10.1016/j.chemosphere.2014.01.021.

[91] A. B. A. Boxall et al., “Pharmaceuticals and personal care products in the environment: what are the big questions?”, Environ. Health Perspect., vol. 120, núm. 9, pp. 1221–1229, sep. 2012, doi: 10.1289/ehp.1104477.

[92] E. Torreele, “Why are our medicines so expensive? Spoiler: Not for the reasons you are being told…”, Eur. J. Gen. Pract., vol. 30, núm. 1, dic. 2024, doi: 10.1080/13814788.2024.2308006.

[93] C. R. Ohoro, A. O. Adeniji, A. I. Okoh, y O. O. Okoh, “Distribution and chemical analysis of pharmaceuticals and personal care products (PPCPs) in the environmental systems: A review”, Int. J. Environ. Res. Public Health, vol. 16, núm. 17, sep. 2019, doi: 10.3390/IJERPH16173026.

[94] C. C. Souza, S. F. Aquino, y S. de Q. Silva, “Ensaios toxicológicos aplicados à análise de águas contaminadas por fármacos TT - Toxicological tests applied to the analysis of water contaminated by drugs”, Eng. Sanit. e Ambient., vol. 25, núm. 2, pp. 217–228, 2020, doi: 10.1590/s1413-41522020183632.

[95] N. P. Ngqwala y P. Muchesa, “Occurrence of pharmaceuticals in aquatic environments: A review and potential impacts in South Africa”, S. Afr. J. Sci., vol. 116, núm. 7–8, pp. 1–7, 2020, doi: 10.17159/sajs.2020/5730.

[96] Y. Xiang, H. Wu, L. Li, M. Ren, H. Qie, y A. Lin, “A review of distribution and risk of pharmaceuticals and personal care products in the aquatic environment in China.”, Ecotoxicol. Environ. Saf., vol. 213, p. 112044, abr. 2021, doi: 10.1016/j.ecoenv.2021.112044.

[97] M. E. Monapathi et al., “Pharmaceutical pollution: Azole antifungal drugs and resistance of opportunistic pathogenic yeasts in wastewater and environmental water”, Appl. Environ. Soil Sci., vol. 2021, 2021, doi: 10.1155/2021/9985398.

[98] H. Wang, H. Xi, L. Xu, M. Jin, W. Zhao, y H. Liu, “Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review”, Sci. Total Environ., vol. 788, 2021, doi: 10.1016/j.scitotenv.2021.147819.

[99] G. Bianco et al., “Phosphodiesterase-5 (Pde-5) inhibitors as emergent environmental contaminants: Advanced remediation and analytical methods”, Water, vol. 13, núm. 20, p. 2859, oct. 2021, doi: 10.3390/W13202859.

[100] P. Vaudin, C. Augé, N. Just, S. Mhaouty-Kodja, S. Mortaud, y D. Pillon, “When pharmaceutical drugs become environmental pollutants: Potential neural effects and underlying mechanisms”, Environ. Res., vol. 205, núm. June 2021, p. 14, abr. 2022, doi: 10.1016/j.envres.2021.112495.

[101] S. K. Huang et al., “The Effect Review of Various Biological, Physical and Chemical Methods on the Removal of Antibiotics”, WATER, vol. 14, núm. 19, 2022, doi: 10.3390/w14193138.

[102] A. S. Adeleye et al., “Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments.”, J. Hazard. Mater., vol. 424, núm. Pt B, p. 127284, feb. 2022, doi: 10.1016/j.jhazmat.2021.127284.

[103] M. K. K. Das, S. Das, y P. K. K. Srivastava, “An overview on the prevalence and potential impact of antimicrobials and antimicrobial resistance in the aquatic environment of India”, Environ. Monit. Assess., vol. 195, núm. 9, 2023, doi: 10.1007/s10661-023-11569-z.

[104] M. de J. S. Chaves, J. Kulzer, P. da R. Pujol de Lima, S. C. Barbosa, y E. G. Primel, “Updated knowledge, partitioning and ecological risk of pharmaceuticals and personal care products in global aquatic environments”, Environ. Sci. Process. Impacts, vol. 24, núm. 11, pp. 1982–2008, nov. 2022, doi: 10.1039/D2EM00132B.

Cómo citar

APA

Quijano Prieto, D. M., Orozco-Díaz, J. G., Toro, J. & Ballesteros-Cabrera, M. del P. (2025). Fármacos en el ambiente: aproximaciones para su estudio a través de una revisión de alcance. Gestión y Ambiente, 28(1), 22. https://doi.org/10.15446/ga.v28n1.120427

ACM

[1]
Quijano Prieto, D.M., Orozco-Díaz, J.G., Toro, J. y Ballesteros-Cabrera, M. del P. 2025. Fármacos en el ambiente: aproximaciones para su estudio a través de una revisión de alcance. Gestión y Ambiente. 28, 1 (oct. 2025), 22. DOI:https://doi.org/10.15446/ga.v28n1.120427.

ACS

(1)
Quijano Prieto, D. M.; Orozco-Díaz, J. G.; Toro, J.; Ballesteros-Cabrera, M. del P. Fármacos en el ambiente: aproximaciones para su estudio a través de una revisión de alcance. Gest. Ambient. 2025, 28, 22.

ABNT

QUIJANO PRIETO, D. M.; OROZCO-DÍAZ, J. G.; TORO, J.; BALLESTEROS-CABRERA, M. del P. Fármacos en el ambiente: aproximaciones para su estudio a través de una revisión de alcance. Gestión y Ambiente, [S. l.], v. 28, n. 1, p. 22, 2025. DOI: 10.15446/ga.v28n1.120427. Disponível em: https://revistas.unal.edu.co/index.php/gestion/article/view/120427. Acesso em: 19 nov. 2025.

Chicago

Quijano Prieto, Diego Mauricio, José Gilberto Orozco-Díaz, Javier Toro, y Magnolia del Pilar Ballesteros-Cabrera. 2025. «Fármacos en el ambiente: aproximaciones para su estudio a través de una revisión de alcance». Gestión Y Ambiente 28 (1):22. https://doi.org/10.15446/ga.v28n1.120427.

Harvard

Quijano Prieto, D. M., Orozco-Díaz, J. G., Toro, J. y Ballesteros-Cabrera, M. del P. (2025) «Fármacos en el ambiente: aproximaciones para su estudio a través de una revisión de alcance», Gestión y Ambiente, 28(1), p. 22. doi: 10.15446/ga.v28n1.120427.

IEEE

[1]
D. M. Quijano Prieto, J. G. Orozco-Díaz, J. Toro, y M. del P. Ballesteros-Cabrera, «Fármacos en el ambiente: aproximaciones para su estudio a través de una revisión de alcance», Gest. Ambient., vol. 28, n.º 1, p. 22, oct. 2025.

MLA

Quijano Prieto, D. M., J. G. Orozco-Díaz, J. Toro, y M. del P. Ballesteros-Cabrera. «Fármacos en el ambiente: aproximaciones para su estudio a través de una revisión de alcance». Gestión y Ambiente, vol. 28, n.º 1, octubre de 2025, p. 22, doi:10.15446/ga.v28n1.120427.

Turabian

Quijano Prieto, Diego Mauricio, José Gilberto Orozco-Díaz, Javier Toro, y Magnolia del Pilar Ballesteros-Cabrera. «Fármacos en el ambiente: aproximaciones para su estudio a través de una revisión de alcance». Gestión y Ambiente 28, no. 1 (octubre 20, 2025): 22. Accedido noviembre 19, 2025. https://revistas.unal.edu.co/index.php/gestion/article/view/120427.

Vancouver

1.
Quijano Prieto DM, Orozco-Díaz JG, Toro J, Ballesteros-Cabrera M del P. Fármacos en el ambiente: aproximaciones para su estudio a través de una revisión de alcance. Gest. Ambient. [Internet]. 20 de octubre de 2025 [citado 19 de noviembre de 2025];28(1):22. Disponible en: https://revistas.unal.edu.co/index.php/gestion/article/view/120427

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

54

Descargas

Los datos de descargas todavía no están disponibles.