Publicado

2018-01-01

Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana

Review of the current state of wastewater management in the Colombian oil industry

DOI:

https://doi.org/10.15446/ga.v21n1.69792

Palabras clave:

Tratamiento de aguas, agua de producción, relación agua-petróleo, procesos de oxidación avanzada. (es)
Water treatment, production water, oil-water ratio, advanced oxidation processes. (en)

Descargas

Autores/as

Este artículo presenta una revisión de las tecnologías usadas en Colombia y otros países para el tratamiento de aguas de la industria petrolera. El estudio parte desde la caracterización de la producción de crudo y la relación agua–crudo; luego se describen los efectos contaminantes del agua residual; asimismo, se cuantifican los destinos que se le dan a estas aguas en nuestro país. También se detallan algunos tratamientos superficiales convencionales y no convencionales. Es claro que, aunque se han hecho progresos significativos, hay que seguir investigando técnicas mucho más eficientes y económicas para eliminar ciertos contaminantes más recalcitrantes.
This paper presents a review of the most used technologies for the treatment of wastewater from the oil industry in Colombia and worldwide. The starting point of this study is the characterization of oil production and the oil–water relationship; then the harmful effects of wastewater are described; and the final destinations of these waters are quantified. Finally, some conventional and unconventional wastewater treatments are described. It is clear that, despite of the progresses made in this matter, there is a broad field of research that has to be explored to seek more efficient and economic techniques to eliminate certain recalcitrant pollutants.

Referencias

Adhoum, N., Monser, L., 2003. Removal of phthalate on modified activated carbon: application to the treatment of industrial wastewater. Separ. Purif. Tech. 38, 233-239. DOI. 10.1016/j.seppur.2003.11.011

Agenson, K., Oh, J.-I., Urase, T., 2003. Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes: controlling parameters to the process. J. Membrane Sci. 225, 91-103. DOI: 10.1016/j.memsci.2003.08.006

Aguilera, R., Sotelo, V., Burgos, C., Arce, C., Gómez, C., Mojica, J., Castillo, H., Jiménez, D., Osorno, J., 2010. Organic geochemistry atlas of Colombia. Earth Sci. Res. J. 14(Especial Edición), 61-77.

Agurto, E., 2012. Mejoras en el tratamiento de agua de inyección para campos maduros de petróleo usando microburbujas de gas natural. Tesis de pregado. Facultad de Ingeniería de Petróleo gas Natural y Petroquímica, Universidad Nacional de Ingeniería, Lima.

Alconsult International, 2005. Guía para la disposición y el tratamiento de agua producida. Guía de ARPEL No. 1. Calgary, Canadá.

ANLA, 2016. Licencias ambientales del sector de hidrocarburos. Disponible en: http://www.anla.gov.co/; consultado: mayo de 2017.

Arnold, R., Burnett, D., Elphick, J., Feeley, T., Galbrun, M., Hightower, M., Jiang, Z., Khan, M., Lavery, M., Luffey, F., Verbeek, P., 2004. Manejo de la producción de agua: de residuo a recurso. Oilfield Rev. 16, 30-45.

Arnold, K., Stewart, M., 2008. Surface production operations: design of oil-handling systems and facilities. Vol. 1. 3 ed. Gulf Professional Publishing; Elsevier, Burlington, MA. DOI: 10.1016/B978-0-7506-7853-7.X5001-7

Arthur, J., Langhus, B., Patel, C., 2005. Technical summary of oil and gas produced water treatment technologies. All Consulting, Tulsa, UK.

Avellaneda, A., 2005. Petróleo, seguridad ambiental y exploración petrolera marina en Colombia. Íconos 21, 11-17.

Bailey, B., Crabtree, M., Tyrie, J., Elphick, J., Kuchuk, F., Romano, C., Roodhart, L., 2000. Water control. Oilfield Rev. 12, 30-51.

Bianco, B., De Michelis, I., Vegliò, F., 2011. Fenton treatment of complex industrial wastewater: optimization of process conditions by surface response method. J. Hazard. Mater. 186, 1733-1738. DOI: 10.1016/j.jhazmat.2010.12.054

Bravo, E., 2007. Los impactos de la explotación petrolera en ecosistemas tropicales y la biodiversidad. Acción Ecol. 24, 35-42.

Broussard, P., 2003. Floatation pump proves successful for the treatment of produced water. En: Proceedings of the 10th Annual International Petroleum Environmental Conference, Houston, TX. 51 p.

Castellanos, J., Tarantino, R., Aranguren, S., 2015. Diseño de estrategia de control avanzado para sistema de celdas de flotación en el tratamiento de aguas de producción de petróleo y gas. Rev. Colomb. Tecnol. Av. 2, 108-115.

Cho, I.-H., Kim, L., Zoh, K., Park, J., Kim, H., 2006. Solar photocatalytic degradation of groundwater contaminated with petroleum hydrocarbons. Environ. Prog. 25, 99-109. DOI: 10.1002/ep.10124

Crini, G., 2005. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30, 38-70. DOI: 10.1016/j.progpolymsci.2004.11.002

Deng, S., Bai, R., Chen, J., Jiang, Z., Yu, G., Zhou, F., Chen, Z., 2002. Produced water from polymer flooding process in crude oil extraction: characterization and treatment by a novel crossflow oil-water separator. Sep. Purif. Technol. 29, 207-216. DOI: 10.1016/S1383-5866(02)00082-5

Díaz, S., Zamora, E., Caselles-Osorio, A., León, J., 2013. Diseño de un humedad construido para el tratamiento del agua de producción de un campo de petróleo colombiano. Rev. Fuentes: Reventón Energ. 11, 53-63.

Diya’uddeen, B., Daud, W., Aziz, A., 2011. Treatment technologies for petroleum refinery effluents: a review. Process Saf. Environ. 89, 95-105. DOI: 10.1016/j.psep.2010.11.003

Dopar, M., Kusic, H., Koprivanac, N., 2011. Treatment of simulated industrial wastewater by photo-Fenton process. Part I: The optimization of process parameters using design of experiments (DOE). Chem. Eng. J. 173, 267-279. DOI: 10.1016/j.cej.2010.09.070

Dores, R., Hussain, A., Katebah, M., Adham, S., 2012. Using advanced water treatment technologies to treat produced water from the petroleum industry. En: International Production and Operations Conference and Exhibition. Society of Petroleum Engineers (SPE), Doha, Qatar. SPE 157108. DOI: 10.2118/157108-MS

Dussan, J., Vives-Florez, M., Sarria, V., Sánchez, O., Delgado, L., González, A., Hernández, S., 2010. Aproximaciones biológicas y fisicoquímicas en el tratamiento de contaminantes: un resumen del aporte de la Universidad de los Andes. Rev. Ing. 30, 100-111. DOI: 10.16924/riua.v0i30.233

Ecopetrol, 2016. Reporte integrado de gestión sostenible 2015. Bogotá.

El-Karsani, K., Al-Muntasheri, G., Hussein, I., 2014. Polymer systems for water shutoff and profile modification: a review over the last decade. SPE J. 19, 135-149. DOI: 10.2118/163100-PA

Faibish, R., Cohen, Y., 2001. Fouling and rejection behavior of ceramic and polymer-modified ceramic membranes for ultrafiltration of oil-in-water emulsions and microemulsions. Colloids Surf.: A Physicochem. Eng. Asp. 191, 27-40. DOI: 10.1016/S0927-7757(01)00761-0

Gallup, D., Isacoff, E., Smith III, D., 1996. Use of Ambersorb carbonaceous adsorbent for removal of BTEX compounds from oil-field produced water. Environ. Prog. 15, 197-203. DOI: 10.1002/ep.670150320

Ghosh, P., Samanta, A., Ray, S., 2010. COD reduction of petrochemical industry wastewater using Fenton’s oxidation. Can. J. Chem. Eng. 88, 1021-1026. DOI: 10.1002/cjce.20353

Grini, P., Hjelsvold, M., Johnsen, S., 2002. Trondheim, choosing produced water treatment technologies based on environmental impact reduction. En: SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers, Kuala Lumpur, Malasia. SPE-74002-MS. DOI: 10.2118/74002-MS

Hansen, B., Davis, S., 1994. Review of potential technologies for the removal of dissolved components from produced water. Chem. Eng. Res. Des. 72, 176-188.

Hasan, D., Aziz, A., Daud, W., 2012. Oxidative mineralisation of petroleum refinery effluent using Fenton-like process. Chem. Eng. Res. Design 90, 298-307. DOI: 10.1016/j.cherd.2011.06.010

Heins, W., Peterson, D., 2003. Use of evaporation for heavy oil produced water treatment. Technical Paper TP1042EN.docx. Suez, Calgary, Canadá.

Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), 2015. Estudio Nacional del Agua 2014. Bogotá.

Jafari Nejad, Sh. (Ed.), 2014. Supercritical water oxidation (SCWO) in oily wastewater treatment. En: National e-Conference on Advances in Basic Sciences and Engineering (AEBSCONF), Kerman, Iran.

Jafari Nejad, Sh. (Ed.), 2015. Investigation of advanced technologies for wastewater treatment from petroleum refinery processes. En: 2nd e-Conference on Recent Research in Science and Technology, Kerman, Iran.

Jafari Nejad, Sh., Abolghasemi, H., Moosavian, M., Maragheh, M., 2010. Prediction of solute solubility in supercritical carbon dioxide: a novel semi-empirical model. Chem. Eng. Res. Des. 88, 893-898. DOI: 10.1016/j.cherd.2009.12.006

Krzemińska, D., Neczaj, E., Borowski, G., 2015. Advanced oxidation processes for food industrial wastewater decontamination. J. Ecol. Eng. 16, 61-71. DOI: 10.12911/22998993/1858

Lee, R., Seright, R., Hightower, M., Sattler, A., Cather, M., McPherson, B., Wrotenbery, L., Martin, D., Whitworth, M., 2002. Strategies for produced water handling in New Mexico. En: Ground Water Protection Council Produced Water Conference, Colorado Springs, CO.

Li, G., An, T., Chen, J., Sheng, G., Fu, J., Chen, F., Zhang, S., Zhao, H., 2006. Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions. J. Hazard. Mater. 138, 392-400. DOI: 10.1016/j.jhazmat.2006.05.083

Mancilla, R., Mesa, H., 2012. Metodología para el manejo de aguas de producción en un campo petrolero. Tesis de pregrado. Facultad de Ingeniería Físico-Químicas, Universidad Industrial de Santander. Bucaramanga, Colombia.

Mandal, T., Maity, S., Dasgupta, D., Datta, S., 2010. Advanced oxidation process and biotreatment: Their roles in combined industrial wastewater treatment. Desalination 250, 87-94. DOI: 10.1016/j.desal.2009.04.012

Manoli, E., Samara, C., 2008. The removal of polycyclic aromatic hydrocarbons in the wastewater treatment process: experimental calculation and model prediction. Environ. Pollut. 151, 477-485. DOI: 10.1016/j.envpol.2007.04.009

Marquenie, J., Kamminga, G., Koop, H., Elferink, T., 1991. Onshore water disposal in the Netherlands: environmental and legal developments. En: SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference. Society of Petroleum Engineers, The Hague, Netherlands. SPE-23320-MS. DOI: 10.2118/23320-MS

Marulanda, V., Bolanos, G., 2010. Supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil: laboratory-scale data and economic assessment. J. Supercrit. Fluids 54, 258-265. DOI: 10.1016/j.supflu.2010.04.008

Mok, N., 2009. Photocatalytic degradation of oily wastewater: effect of catalyst concentration load, irradiation time and temperature. Tesis de pregrado. Faculty of Chemical & Natural Resources Engineering, University Malaysia Pahang, Pekan, Malasia.

Morales, M., Revelo, A., 2016. Desempeño técnico y ambiental de las tecnologías convencionales y modernas de tratamiento de agua producida. Tesis de pregrado. Escuela de Ingeniería de Petróleos, Universidad Industrial de Santander, Bucaramanga, Colombia.

Mota, A., Albuquerque, L., Beltrame, L., Chiavone-Filho, O., Machulek Jr., A., Nascimento, C., 2008. Advanced oxidation processes and their application in the petroleum industry: a review. Braz. J. Petrol. Gas 2, 122-142.

Niño, F., Gómez, J., s.f. Taller de pozos de inyección: generalidades sobre pozos disposal. [diapositivas de power point]. Disponible en: Ecopetrol; Equion, http://www.anh.gov.co/Seguridad-comunidades-y-medio-ambiente/Proyectos-de-Gestion-del-conocimiento/Taller%20Pozos%20de%20Inyeccin/Taller%20de%20pozos%20de%20inyecci%C3%B3n_Generalidades%20sobre%20pozos%20de%20disposici%C3%B3n_after%20JG1.pptx; consultado: octubre de 2017.

Oller, I., Malato, S., Sánchez-Pérez, J., 2011. Combination of advanced oxidation processes and biological treatments for wastewater decontamination. A review. Sci. Total Environ. 409, 4141-4166. DOI: 10.1016/j.scitotenv.2010.08.061

Pardo-Díaz, S., Rojas-Tapias, D., Roldan, F., Brandão, P., Almansa-Manrique, E., 2017. Biodegradación de fenol en aguas tratadas de la industria petrolera para re-uso en cultivos agrícolas. Rev. Biol. Trop. 65, 685-699. DOI: 10.15517/rbt.v65i2.23992

Peng, H., Volchek, K., Mackinnon, M., Wong, W., Brown, C., 2004. Application on to nanofiltration to water management options for oil sands operation. Desalination 170, 137-150. DOI: 10.1016/j.desal.2004.03.018

Pignatello, J., Oliveros, E., MacKay, A., 2006. Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 36, 1-84. DOI: 10.1080/10643380500326564

Pontes, R., Moraes, J., Machulek Jr, A., Pinto, J., 2010. A mechanistic kinetic model for phenol degradation by the Fenton process. J. Hazar. Mat. 176, 402-413. DOI: 10.1016/j.jhazmat.2009.11.044

Presidencia de República de Colombia, 2010. Decreto 3930 2010, usos del agua y residuos líquidos. Diario oficial Diario Oficial 47837. Bogotá.

Sabet, J., Jafari Nejad, S., Golzary, A., 2014. Supercritical water oxidation for the recovery of dysprosium ion from aqueous solutions. Int. Res. J. Appl. Basic Sci. 8, 1079-1083.

Santos, M., Alves, A., Madeira, L., 2011. Paraquat removal from water by oxidation with Fenton’s reagent. Chem. Eng. J. 175, 279-290. DOI: 10.1016/j.cej.2011.09.106

Trujillo, H., Losada, J., Rodríguez, H., 2017. The Colombian Amazon: oil exploitation and socio-environmental conflicts. Rev. Cient. Gen. José María Córdova 15, 209-223. DOI: 10.21830/19006586.181

Veil, J., 2007. Research to improve water-use efficiency and conservation: technologies and practice. Serial No. 110-68. Hearing Before the Subcommittee on Energy and Environment Committee on Science and Technology House of Representatives one Hundred Tenth Congress, Washington, DC.

Veil, J., Puder, M., Elcock, D., Redweik Jr, R., 2004. A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. US DOE, W-31-109-Eng-38. U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA.

Vengosh, A., Jackson, R., Warner, N., Darrah, T., Kondash, A., 2014. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 48, 8334-8348. DOI: 10.1021/es405118y

Villegas, J., Arcila, N., Ortega, D., Franco, C., Cortés, F., 2017. Remoción de hidrocarburos de aguas de producción de la industria petrolera utilizando nanointermedios compuestos por SiO2 funcionalizados con nanopartículas magnéticas. Dyna 84, 65-74. DOI: 10.15446/dyna.v84n202.63686

Wenbing, M., Hongpeng, L., Xuemei, M., 2013. Study on supercritical water oxidation of oily wastewater with ethanol. Res. J. Appl. Sci. Eng. Technol. 6, 1007-1011. DOI: 10.19026/rjaset.6.4005

Xu, D., Wang, S., Tang, X., Gong, Y., Guo, Y., Wang, Y., Zhang, J., 2012. Design of the first pilot scale plant of China for supercritical water oxidation of sewage sludge. Chem. Eng. Res. Des. 90, 288-297. DOI: 10.1016/j.cherd.2011.06.013

Yang, Y., Zhang, X., Wang, Z., 2002. Oilfield produced water treatment with surface-modified fiber ball media filtration. Water Sci. Technol. 46, 165-170. DOI: 10.2166/wst.2002.0733

Yu, L., Han, M., He, F., 2013. A review of treating oily wastewater. Arab. J. Chem. 10(Sppl 2), 1913-1922. DOI: 10.1016/j.arabjc.2013.07.020

Zhang, T., Wang, X., Zhang, X., 2014. Recent progress in TiO2-mediated solar photocatalysis for industrial wastewater treatment. 2014, 607954. DOI: 10.1155/2014/607954

Zhong, J., Sun, X., Wang, C., 2003. Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Separ. Purif. Technol. 32, 93-98. DOI: 10.1016/S1383-5866(03)00067-4

Cómo citar

APA

Mesa, S. L., Orjuela, J. M., Ortega Ramírez, A. T. y Sandoval, J.-A. (2018). Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana. Gestión y Ambiente, 21(1), 87–98. https://doi.org/10.15446/ga.v21n1.69792

ACM

[1]
Mesa, S.L., Orjuela, J.M., Ortega Ramírez, A.T. y Sandoval, J.-A. 2018. Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana. Gestión y Ambiente. 21, 1 (ene. 2018), 87–98. DOI:https://doi.org/10.15446/ga.v21n1.69792.

ACS

(1)
Mesa, S. L.; Orjuela, J. M.; Ortega Ramírez, A. T.; Sandoval, J.-A. Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana. Gest. Ambient. 2018, 21, 87-98.

ABNT

MESA, S. L.; ORJUELA, J. M.; ORTEGA RAMÍREZ, A. T.; SANDOVAL, J.-A. Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana. Gestión y Ambiente, [S. l.], v. 21, n. 1, p. 87–98, 2018. DOI: 10.15446/ga.v21n1.69792. Disponível em: https://revistas.unal.edu.co/index.php/gestion/article/view/69792. Acesso em: 17 ene. 2025.

Chicago

Mesa, Sandra Liliana, Johana Milena Orjuela, Angie Tatiana Ortega Ramírez, y Juan-Andrés Sandoval. 2018. «Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana». Gestión Y Ambiente 21 (1):87-98. https://doi.org/10.15446/ga.v21n1.69792.

Harvard

Mesa, S. L., Orjuela, J. M., Ortega Ramírez, A. T. y Sandoval, J.-A. (2018) «Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana», Gestión y Ambiente, 21(1), pp. 87–98. doi: 10.15446/ga.v21n1.69792.

IEEE

[1]
S. L. Mesa, J. M. Orjuela, A. T. Ortega Ramírez, y J.-A. Sandoval, «Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana», Gest. Ambient., vol. 21, n.º 1, pp. 87–98, ene. 2018.

MLA

Mesa, S. L., J. M. Orjuela, A. T. Ortega Ramírez, y J.-A. Sandoval. «Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana». Gestión y Ambiente, vol. 21, n.º 1, enero de 2018, pp. 87-98, doi:10.15446/ga.v21n1.69792.

Turabian

Mesa, Sandra Liliana, Johana Milena Orjuela, Angie Tatiana Ortega Ramírez, y Juan-Andrés Sandoval. «Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana». Gestión y Ambiente 21, no. 1 (enero 1, 2018): 87–98. Accedido enero 17, 2025. https://revistas.unal.edu.co/index.php/gestion/article/view/69792.

Vancouver

1.
Mesa SL, Orjuela JM, Ortega Ramírez AT, Sandoval J-A. Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana. Gest. Ambient. [Internet]. 1 de enero de 2018 [citado 17 de enero de 2025];21(1):87-98. Disponible en: https://revistas.unal.edu.co/index.php/gestion/article/view/69792

Descargar cita

CrossRef Cited-by

CrossRef citations10

1. Anabel Rial, Álvaro González. (2020). Reúso del agua de producción de hidrocarburos: reto y oportunidad. Gestión y Ambiente, 23(1) https://doi.org/10.15446/ga.v23n1.87664.

2. Santiago Céspedes, Natalia A. Cano, Gordon Foo, David Jaramillo, Daniel Martinez, Manuel Gutiérrez, Javier Pataquiba, Juan Rojas, Farid B. Cortés, Camilo A. Franco. (2022). Technical and Environmental Feasibility Study of the Co-Production of Crude Oil and Electrical Energy from Geothermal Resources: First Field Trial in Colombia. Processes, 10(3), p.568. https://doi.org/10.3390/pr10030568.

3. Eduardo López- Ramos, Felipe Gonzalez-Penagos, Cesar A. Patiño, Albeiro López. (2022). Low - medium enthalpy geothermal resource assessment in deep reservoirs of the Llanos Basin - Colombia. CT&F - Ciencia, Tecnología y Futuro, 12(1), p.13. https://doi.org/10.29047/01225383.380.

4. Joaquín Hernández-Fernández, Rodrigo Ortega-Toro, Juan López-Martinez. (2023). A New Route of Valorization of Petrochemical Wastewater: Recovery of 1,3,5-Tris (4-tert-butyl-3-hydroxy-2,6-dimethyl benzyl)–1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (Cyanox 1790) and Its Subsequent Application in a PP Matrix to Improve Its Thermal Stability. Molecules, 28(5), p.2003. https://doi.org/10.3390/molecules28052003.

5. Parisa Rinaldi, María Cecilia Roa-García, Sandra Brown. (2021). Producing energy, depleting water: the energy sector as a driver of seasonal water scarcity in an extractive frontier of the upper Orinoco watershed, Colombia. Water International, 46(5), p.723. https://doi.org/10.1080/02508060.2021.1955327.

6. Adan Y. León, José D. Contreras-Arenas, Cristian F. Garnica-Fuentes, Michell A. Jiménez-Caballero, Diego F. Pinto-Hernández, Emiliano Ariza-León, Darío Y. Peña-Ballesteros, Daniel R. Molina-Velasco. (2023). Removal of organic compounds in wastewater using cocoa shell‑based activated carbon–SiO2 nanoparticles. Environment, Development and Sustainability, https://doi.org/10.1007/s10668-023-04168-y.

7. Wilson Corredor-Santamaría, Diego A. Mora-Solarte, Ziv Arbeli, José M. Navas, Yohana M. Velasco-Santamaría. (2021). Liver biomarkers response of the neotropical fish Aequidens metae to environmental stressors associated with the oil industry. Heliyon, 7(7), p.e07458. https://doi.org/10.1016/j.heliyon.2021.e07458.

8. Angie Tatiana Ortega-Ramírez, Ivonne Angulo-De Castro, Nubia Liliana Becerra, Juan Camilo Gómez Caipa, Victor Alexei Huerta-Quiñones. (2022). Use of Water from Petroleum Production in Colombia for Soil Irrigation as a Sustainable Strategy Adapted from the Oman Desert. Sustainability, 14(22), p.14892. https://doi.org/10.3390/su142214892.

9. Sonia Milena Vegas Mendoza, Eliseo Avella Moreno, Carlos Alberto Guerrero Fajardo, Ricardo Fierro Medina. (2019). Liquid–Liquid Continuous Extraction and Fractional Distillation for the Removal of Organic Compounds from the Wastewater of the Oil Industry. Water, 11(7), p.1452. https://doi.org/10.3390/w11071452.

10. Juan Sandoval Herrera, Angie Ortega Ramírez, Estefanie Luque Castro, Catherin Moreno León. (2019). Revisión del uso de sellos químicos para el control de agua de producción en pozos petroleros. Revista de Investigación, 11(2), p.141. https://doi.org/10.29097/2011-639X.234.

Dimensions

PlumX

Visitas a la página del resumen del artículo

3568

Descargas

Los datos de descargas todavía no están disponibles.