Publicado

2019-01-01

Contaminación en agua y sedimentos por hidrocarburos aromáticos policíclicos: Revisión de la dinámica y los métodos analíticos

Pollution in Water and Sediments by Polycyclic Aromatic Hydrocarbons: Review of Dynamics and Analytical Methods

DOI:

https://doi.org/10.15446/ga.v22n1.77874

Palabras clave:

HAP, sedimento, agua, enfermedades, suelo (es)
HAP, sediment, water, diseases, soil (en)

Descargas

Autores/as

El aumento en el uso de combustibles fósiles y el desarrollo industrial, ha llevado al aumento de la concentración de hidrocarburos aromáticos policíclicos (HAP) en los recursos naturales incluyendo el aire, el agua y el suelo, esto ha derivado en el incremento de enfermedades respiratorias, dérmicas, cancerígenas, mutagénicas y teratogénicas en la población. Esta revisión, tiene como objetivo presentar las fuentes de emisión, transporte, destino, los principales congéneres de HAP, sus propiedades fisicoquímicas, el muestreo pasivo, las técnicas de extracción y la aplicación de metodologías analíticas en agua y sedimentos como la cromatografía de gases acoplada a espectrometría de masas, que permiten la evaluación de estas sustancias y garantizar la calidad de los recursos hídricos. En Colombia se han presentado dificultades en la implementación de estas técnicas de extracción e identificación de HAP debido a su elevado costo y al desconocimiento de los riesgos ambientales y a la salud humana por parte de las autoridades.

The increase in the use of fossil fuels and industrial development, has led to an increase in the concentration of polycyclic aromatic hydrocarbons (PAHs) in natural resources, including air, water and soil, this had led to an increase in respiratory diseases, dermal, carcinogenic, mutagenic and teratogenic in the population. This review aims to present the sources of emission, transport, destination, the main congeners of PAHs, their physicochemical properties, passive sampling, extraction techniques and the application of analytical methodologies in water and sediments such as gas chromatography coupled to mass spectrometry, which allow the evaluation of these substances and guarantee the quality of water resource. In Colombia there have been difficulties in the implementation of these PAH extraction and identification techniques due to their high cost and lack of knowledge of environmental risks and human health by the legal authorities.

Referencias

Abdel-Shafy, H., Mansour, M., 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25(1), 107-123. DOI: https://doi.org/10.1016/j.ejpe.2015.03.011

Allan, I., Harman, C., Kringstad, A., Bratsberg, E., 2010. Effect of sampler material on the uptake of PAHs into passive sampling devices. Chemosphere 79(4), 470-475. DOI: https://doi.org/10.1016/j.chemosphere.2010.01.021

Andersson, J., Achten, C., 2015. Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of pacs for environmental purposes. Polycycl. Aromat. Comp. 35(2-4), 330-354. DOI: https://doi.org/10.1080/10406638.2014.991042

Arnoldsson, K., Magnusson, R., Hägglund, L., Lejon, C., Wingfors, H., 2015. Initial evaluation of an axial passive sampler for PAHs and OPAHs using substrates with and without gas sampling capacity and varying diffusion distances. Atmos. Pollut. Res. 6(4), 673-681. DOI: https://doi.org/10.5094/APR.2015.076

Bandowe, B., Nkansah, M., 2016. Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. Sci. Total Environ. 553, 439-449. DOI: https://doi.org/10.1016/j.scitotenv.2016.02.142

Barra, R., Quiroz, R., Saez, K., Araneda, A., Urrutia, R., Popp, P., 2009. Sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of the Biobio River in south central Chile. Environ. Chem. Lett. 7(2), 133-139. DOI: https://doi.org/10.1007/s10311-008-0148-z

Burgos-Núñez, S., Navarro-Frómeta, A., Marrugo-Negrete, J., Enamorado-Montes, G., Urango-Cárdenas, I., 2017. Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem. Mar. Pollut. Bull. 120(1-2), 379-386. DOI: https://doi.org/10.1016/j.marpolbul.2017.05.016

Caballero-Gallardo, K., Guerrero-Castilla, A., Johnson-Restrepo, B., de la Rosa, J., Olivero-Verbel, J., 2015. Chemical and toxicological characterization of sediments along a Colombian shoreline impacted by coal export terminals. Chemosphere, 138, 837-846. DOI: https://doi.org/10.1016/j.chemosphere.2015.07.062

Cai, Y., Yan, Z., NguyenVan, M., Wang, L., Cai, Q., 2015. Magnetic solid phase extraction and gas chromatography-mass spectrometrical analysis of sixteen polycyclic aromatic hydrocarbons. J. Chromatogr. A, 1406, 40-47. DOI: https://doi.org/10.1016/j.chroma.2015.06.024

Cardoso, F., Dauner, A., Martins, C., 2016. A critical and comparative appraisal of polycyclic aromatic hydrocarbons in sediments and suspended particulate material from a large South American subtropical estuary. Environ. Pollut. 214, 219-229. DOI: https://doi.org/10.1016/j.envpol.2016.04.011

Casanova, R., Celis, C., Bastidas, G., 2008. Evaluación de los niveles de hidrocarburos aromáticos policíclicos en sedimentos de las principales bahías del Pacífico colombiano. Bol. Cient. CCCP, 15, 47-59.

Charriau, A., Lissalde, S., Poulier, G., Mazzella, N., Buzier, R., Guibaud, G., 2016. Overview of the Chemcatcher® for the passive sampling of various pollutants in aquatic environments Part A: Principles, calibration, preparation and analysis of the sampler. Talanta 148, 556-571. DOI: https://doi.org/10.1016/j.talanta.2015.06.064

Deepthike, H., Tecon, R., Van Kooten, G., Van der meer, J., Harms, H., Wells, M., Shoet, J., 2009. Unlike PAHs from Exxon Valdez crude oil, PAHs from Gulf of Alaska coals are not readily bioavailable. Environ. Sci. Technol. 43, 5864-5870. DOI: https://doi.org/10.1021/es903508h.10.1021/es100176k

Drabova, L., Pulkrabova, J., Kalachova, K., Tomaniova, M., Kocourek, V., Hajslova, J., 2012. Rapid determination of polycyclic aromatic hydrocarbons (PAHs) in tea using two-dimensional gas chromatography coupled with time of flight mass spectrometry. Talanta 100, 207-216. DOI: https://doi.org/10.1016/j.talanta.2012.07.081

EPA, 1970. Water quality criteria data book. En: Little, I., (Ed.). Oranic chemical pollution of freshwater. Vol. I. Clean Water, Cambribge, MA.

Esen, F., Siddik, S., Tasdemir, Y., 2008. Bulk deposition of polycyclic aromatic hydrocarbons (PAHs) in an industrial site of Turkey. Environ. Pollut. 152(2), 461-467. DOI: https://doi.org/10.1016/j.envpol.2007.05.031

Furton, K., Pentzke, G., 1998. Polycyclic aromatic hydrocarbons. En: Shibamoto, T. (Ed.), Chromatography analysis of environmental and food toxicants. Marcel Dekker, New York. pp. 1-30.

Gao, J., Huang, C., Lin, Y., Tong, P., Zhang, L., 2016. In situ solvothermal synthesis of metal – organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons. J. Chromatog. A, 1436, 1-8. DOI: https://doi.org/10.1016/j.chroma.2016.01.051

Garavito, J., 2006. Determinación de la concentración de HAPs presentes en el material emitido por fuentes móviles en la localidad de puente aranda de la ciudad de Bogotá. Universidad de la Salle, Bogotá, DC.

García-Martínez, M., 2005. Los hidrocarburos policíclicos aromáticos asociados a combustibles fósiles. caracterización , análisis y remediación. Universidad Politecnica de Madrid, Madrid.

Gong, M., Zhu, W., Zhang, H., Su, Y., Fan, Y. 2016. Polycyclic aromatic hydrocarbon formation from gasification of sewage sludge in supercritical water: The concentration distribution and effect of sludge properties. J Supercrit. Fluids 113, 112-118. DOI: https://doi.org/10.1016/j.supflu.2016.03.021

Gonzáles, E., Loyola, R., Neira, J., Neira, F., 2013. Contenido, Distribución y origen de hidrocarburos en sedimentos de tres lagunas urbanas de concepcion-chile. Quím. Nova 36(5), 669-674.

González, G., Botello, A., Vélez, G., 1994. Contaminación por hidrocarburos aromáticos y policíclicos (HAP´S) disueltos en la laguna Mecoacán, Tabasco, México. Hidrobiológica 4(1-2), 21-28.

Guo, M., Gong, Z., Li, X., Allinson, G., Rookes, J., Cahill, D., 2017. Polycyclic aromatic hydrocarbons bioavailability in industrial and agricultural soils: Linking SPME and Tenax extraction with bioassays. Ecotox. Environ. Safe. 140, 191-197. DOI: https://doi.org/10.1016/j.ecoenv.2017.02.044

Hajian, M., Amin, M., Beik, F., Ebrahimi, A., Farhadkhani, M., 2013. Determination of polycyclic aromatic hydrocarbons concentration in eight brands of black tea which are used more in Iran. Int. J. Environ. Health Eng. 2(3), 1-5. DOI: https://doi.org/10.4103/2277-9183.122427

Hijosa-Valsero, M., Bécares, E., Fernández-Aláez, C., Fernández-Aláez, M., Mayo, R., Jiménez, J., 2016. Chemical pollution in inland shallow lakes in the Mediterranean region (NW Spain): PAHs, insecticides and herbicides in water and sediments. Sci. Total Environ. 544, 797-810. DOI: https://doi.org/10.1016/j.scitotenv.2015.11.160

Hong, W., Jia, H., Li, Y., Sun, Y., Liu, X., Wang, L., 2016. Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in the coastal seawater, surface sediment and oyster from Dalian, Northeast China. Ecotox. Environ. Safe. 128, 11-20. DOI: https://doi.org/10.1016/j.ecoenv.2016.02.003

Humel, S., Schmidt, S., Sumetzberger-Hasinger, M., Mayer, P., Loibner, A., 2017. Enhanced accessibility of Polycyclic Aromatic Hydrocarbons (PAHs) and heterocyclic PAHs in industrially contaminated soil after passive dosing of a competitive sorbate. Environ. Sci. Technol. 51(14), 8017-8026. DOI: https://doi.org/10.1021/acs.est.7b01198

Ivshina, I., Kostina, L., Krivoruchko, A., Kuyukina, M., Peshkur, T., Anderson, P., Cunningham, C., 2016. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. J. Hazard. Mater. 312, 8-17. DOI: https://doi.org/10.1016/j.jhazmat.2016.03.007

Johnson-Restrepo, B., Olivero-Verbel, J., Lu, S., Guette-Fernández, J., Baldiris-Avila, R., O’Byrne-Hoyos, I., Aldous, K., Addink, R., Kannan, K., 2008. Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environ. Pollut. 151(3), 452-459. DOI: https://doi.org/10.1016/j.envpol.2007.04.011

Khan, Z., Troquet, J., Vachelard, C., 2005. Sample preparation and analytical techniques for determination of polyaromatic hydrocarbons in soils. Int. J. Environ. Sci. Technol. 2(3), 275-286. DOI: https://doi.org/10.1007/BF03325887

Klučárová, V., Benická, E., Vrana, B., 2013. Development of method of isolation and purification of PAHs from exposed semipermeable membrane devices (SPMDs) prior to GC-MS analysis. Acta Chim. Slov. 6(2), 281-287. DOI: https://doi.org/10.2478/acs-2013-0041

Koci, V., Mlejnek, M., Kochankova, L., 2003. Toxicological evaluation of exposed SPMD membranes. Cent. Eur. J. Chem. 1(1), 28-34. DOI: https://doi.org/10.2478/bf02479255

Kronholm, J., Kettunen, J., Hartonen, K., Riekkola, M.-L. 2004. Pressurised hot water extraction ofn-alkanes and polyaromatic hydrocarbons in soil and sediment from the oil shale industry district in estonia. J. Soils Sediments 4(2), 107-114. DOI: https://doi.org/10.1007/BF02991054

Lawal, A., 2017. Polycyclic aromatic hydrocarbons. A review. Cogent Environ. Sci. 3(1), 1-89. DOI: https://doi.org/10.1080/23311843.2017.1339841

Li, J., Yang, L., Luo, S., Chen, B., Li, J., Lin, H., Cai, Q., Yao, S. 2010. Polycyclic aromatic hydrocarbon detection by electrochemiluminescence generating Ag/TiO2 nanotubes. Anal. Chem. 82(17), 7357-7361.

Li, Q.-L., Wang, X., Chen, X.-F., Wang, M.-L., Zhao, R.-S. 2015. In situ hydrothermal growth of ytterbium-based metal-organic framework on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons from environmental samples. J. Chromatog. A, 1415(2015), 11-19. DOI: https://doi.org/10.1016/j.chroma.2015.08.036

Lian, J., Ren, Y., Chen, J., Wang, T., Cheng, T., 2009. Distribution and source of alkyl polycyclic aromatic hydrocarbons in dustfall in Shanghai, China: the effect on the coastal area. J. Environ. Monitor. 11(1), 187-192. DOI: https://doi.org/10.1039/b814232g

Liao, C., Yang, P., Xie, Z., Zhao, Y., Cheng, X., Zhang, Y., Cheng, X., Zhang, Y., Ren, Z., Guo, Z., Liao, J., 2010. Applicationof gc-triple quadrupole MS in the quantitative confirmation of polycyclic aromatic hydrocarbons and phthalic acid esters in soil. J. Chromatogr. Sci. 48(3), 161-166. DOI: https://doi.org/10.1093/chromsci/48.3.161

Lissalde, S., Charriau, A., Poulier, G., Mazzella, N., Buzier, R., Guibaud, G., 2016. Overview of the Chemcatcher® for the passive sampling of various pollutants in aquatic environments Part B: Field handling and environmental applications for the monitoring of pollutants and their biological effects. Talanta 148, 572-582. DOI: https://doi.org/10.1016/j.talanta.2015.06.076

Luo, W., Gao, J., Bi, X., Xu, L., Guo, J., Zhang, Q., Romesh, K., Giesy J., Kang, S., 2016. Identification of sources of polycyclic aromatic hydrocarbons based on concentrations in soils from two sides of the Himalayas between China and Nepal. Environ. Pollut. 212, 424-432. DOI: https://doi.org/10.1016/j.envpol.2015.11.018

Ma, J., Xiao, R., Li, J., Yu, J., Zhang, Y., Chen, L., 2010. Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography-mass spectrometry. J. Chromatogr. A, 1217(34), 5462-5469. DOI: https://doi.org/10.1016/j.chroma.2010.06.060

Manneh, R., Abi Ghanem, C., Khalaf, G., Najjar, E., El Khoury, B., Iaaly, A., El Zakhem, H., 2016. Analysis of polycyclic aromatic hydrocarbons (PAHs) in Lebanese surficial sediments: A focus on the regions of Tripoli, Jounieh, Dora, and Tyre. Mar. Pollut. Bull. 110(1), 578-583. DOI: https://doi.org/10.1016/j.marpolbul.2016.05.058

Manzetti, S., 2013. Polycyclic aromatic hydrocarbons in the environment: Environmental fate and transformation. Polycycl. Aromat. Comp. 33(4), 311-330. DOI: https://doi.org/10.1080/10406638.2013.781042

Mattei, P., Cincinelli, A., Martellini, T., Natalini, R., Pascale, E., Renella, G., 2016. Reclamation of river dredged sediments polluted by PAHs by co-composting with green waste. Sci. Total Environ. 566-567, 567-574. DOI: https://doi.org/10.1016/j.scitotenv.2016.05.140

Mollahosseini, A., Rokue, M., Mojtahedi, M., Toghroli, M., Kamankesh, M., Motaharian, A., 2016. Mechanical stir bar sorptive extraction followed by gas chromatography as a new method for determining polycyclic aromatic hydrocarbons in water samples. Microchem. J. 126, 431-437. DOI: https://doi.org/10.1016/j.microc.2016.01.001

Mugica-Alvarez, V., Santiago-de la Rosa, N., Figueroa-Lara, J., Flores-Rodríguez, J., Torres-Rodríguez, M., Magaña-Reyes, M., 2015. Emissions of PAHs derived from sugarcane burning and processing in Chiapas and Morelos México. Sci. Total Environ. 527-528, 474-482. DOI: https://doi.org/10.1016/j.scitotenv.2015.04.089

Neary, K., Boving, T., 2011. The fate of the aqueous phase polycyclic aromatic hydrocarbon fraction in a detention pond system. Environ. Pollut. 159(10), 2882-2890. DOI: https://doi.org/10.1016/j.envpol.2011.04.046

Neff, J., Stout, S., Gunstert, D., 2005. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: Identifying sources and ecological hazard. Integr. Environ. Asses. Manag. 1(1), 22-33.

Nikitha, T., Satyaprakash, M., Satya Vani, S., Sadhana, B., Padal, S., 2017. A review on polycyclic aromatic hydrocarbons: Their transport, fate and biodegradation in the environment. Int. J. Curr. Microbiol. Appl. Sci. 6(4), 1627-1639. DOI: https://doi.org/10.20546/ijcmas.2017.604.199

Nikolaou, A., Kostopoulou, M., Lofrano, G., Meric, S., 2009. Determination of PAHs in marine sediments: analytical methods and environmental concerns. Global Nest J. 11(4), 391-405.

O’Connell, S., McCartney, M., Paulik, L., Allan, S., Tidwell, L., Wilson, G., Anderson, K., 2014. Improvements in pollutant monitoring: Optimizing silicone for co-deployment with polyethylene passive sampling devices. Environ. Pollut. 193, 71-78. DOI: https://doi.org/10.1016/j.envpol.2014.06.019

Page, D., Miotliński, K., Gonzalez, D., Barry, K., Dillon, P., Gallen, C., 2014. Environmental monitoring of selected pesticides and organic chemicals in urban stormwater recycling systems using passive sampling techniques. J. Contam. Hydrol. 158, 65-77. DOI: https://doi.org/10.1016/j.jconhyd.2014.01.004

Pavia, D., Lampman, G., Kriz, G., Vyvyan, J., 2013. Introduction to spectroscopy. 5th ed. Cencage learning, Vol. 121. Bellingham, WA. DOI: https://doi.org/10.1006/jmra.1996.0145

Piccardo, M., Stella, A., Pala, M., Balducci, D., Valerio, F., 2010. Field use of semipermeable membrane devices (SPMDs) for passive air sampling of polycyclic aromatic hydrocarbons: Opportunities and limitations. Atmos. Environ. 44(16), 1947-1951. DOI: https://doi.org/10.1016/j.atmosenv.2010.03.003

Rocío-Bautista, P., Pino, V., Ayala, J., Pasán, J., Ruiz-Pérez, C., Afonso, A., 2016. A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea. J. Chromatogr. A, 1436, 42-50. DOI: https://doi.org/http://dx.doi.org/10.1016/j.chroma.2016.01.067

Rubio-Clemente, A., Torres-Palma, R., Peñuela, G., 2014. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review. Sci. Total Environ. 478, 201-225. DOI: https://doi.org/10.1016/j.scitotenv.2013.12.126

Sadeghi, R., Kobarfard, F., Yazdanpanah, H., Eslamizad, S., Bayat, M., 2016. Validation of an analytical method for determination of 13 priority polycyclic aromatic hydrocarbons in mineral water using dispersive liquid-liquid microextraction and GC-MS. Iran. J. Pharm. Res. 15(1), 157-168.

Saha, M., Togo, A., Mizukawa, K., Murakami, M., Takada, H., Zakaria, M., Chiem, N., Tuyen, B., Prudente, M., Boonyatumanond, R., Sarkar, S., Bhattacharya, B., Mishra, P., Tana, T., 2009. Sources of sedimentary PAHs in tropical Asian waters: differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Mar. Pollut. Bull. 58(2), 189-200. DOI: https://doi.org/10.1016/j.marpolbul.2008.04.049

Santana, J., Valdés, M., Olivares, S., Cazorla, L., Peláez-Peláez, M.-J., Bustamante-Cano, J.-J., Gómez-López, E.-D., 2012. Determinación de hidrocarburos aromáticos policíclicos ligeros en aguas superficiales de los ríos Almendares y Luyanó en La Habana. Rev. CENIC Cienc. Quím. 43, 1-7. DOI: https://doi.org/10.17151/luaz.2016.43.5

Sanz-Landaluze, J., Bartolome, L., Zuloaga, O., González, L., Dietz, C., Cámara, C., 2006. Accelerated extraction for determination of polycyclic aromatic hydrocarbons in marine biota. Anal. Bioanal. Chem. 384(6), 1331-1340. DOI: https://doi.org/10.1007/s00216-005-0249-5

Sarria-Villa, R., Ocampo-Duque, W., Páez, M., Schuhmacher, M., 2016. Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment. Sci. Total Environ. 540, 455-465. DOI: https://doi.org/10.1016/j.scitotenv.2015.07.020

Shi, Y., Wu, H., Wang, C., Guo, X., Du, J., Du, L., 2016. Determination of polycyclic aromatic hydrocarbons in coffee and tea samples by magnetic solid-phase extraction coupled with HPLC-FLD. Food Chem. 199, 75-80. DOI: https://doi.org/10.1016/j.foodchem.2015.11.137

Sibiya, P., Chimuka, L., Cukrowska, E., Tutu, H., 2013. Development and application of microwave assisted extraction (MAE) for the extraction of five polycyclic aromatic hydrocarbons in sediment samples in Johannesburg area, South Africa. Environ. Monitor. Assess. 185(7), 5537-5550. DOI: https://doi.org/10.1007/s10661-012-2965-6

Soliman, Y., Al Ansari, E., Wade, T., 2014. Concentration, composition and sources of PAHs in the coastal sediments of the exclusive economic zone (EEZ) of Qatar, Arabian Gulf. Mar. Pollut. Bull. 85(2), 542-548. DOI: https://doi.org/10.1016/j.marpolbul.2014.04.027

Stortini, A., Martellini, T., Del Bubba, M., Lepri, L., Capodaglio, G., Cincinelli, A., 2009. n-Alkanes, PAHs and surfactants in the sea surface microlayer and sea water samples of the Gerlache Inlet sea (Antarctica). Microchem. J. 92(1), 37-43. DOI: https://doi.org/10.1016/j.microc.2008.11.005

USEPA, 2000. Deposition of air pollutants to the great waters: Third report congress. EPA-453/R-00-005. Raleigh-Cary, NC.

Vrana, B., Smedes, F., Prokeš, R., Loos, R., Mazzella, N., Miege, C., Budzinski, H., Vermeirssen, E., Ocelka, T., Gravell, A., Kaserzon, S., 2016. An interlaboratory study on passive sampling of emerging water pollutants. TRAC-Trend Anal. Chem. 76, 153-165. DOI: https://doi.org/10.1016/j.trac.2015.10.013

Wade, T., Sericano, J., Sweet, S., Knap, A., Guinasso, N., 2016. Spatial and temporal distribution of water column total polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH) from the Deepwater Horizon (Macondo) incident. Mar. Pollut. Bull. 103(1-2), 286-293. DOI: https://doi.org/10.1016/j.marpolbul.2015.12.002

Wang, M., Cui, S., Yang, X., Bi, W., 2015. Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples. Talanta, 132, 922-928. DOI: https://doi.org/10.1016/j.talanta.2014.08.071

Wenzl, T., Simon, R., Anklam, E., Kleiner, J., 2006. Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. TRAC-Trend Anal. Chem. 25(7), 716-725.

Wu, Y.-L., Wang, X.-H., Li, Y.-Y., Hong, H.-S., 2011. Occurrence of polycyclic aromatic hydrocarbons (PAHs) in seawater from the Western Taiwan Strait, China. Mar. Pollut. Bul. 63(5-12), 459-463. DOI: https://doi.org/10.1016/j.marpolbul.2011.03.008

Xie, S.-M., Zhang, M., Wang, Z.-Y., Yuan, L.-M., 2011. Porous metal membranes for solid-phase extraction of polycyclic aromatic hydrocarbons. Analyst 136(19), 3988. DOI: https://doi.org/10.1039/c1an15245a

Yang, X., Yu, L., Chen, Z., Xu, M., 2016. Bioavailability of Polycyclic Aromatic Hydrocarbons and their Potential Application in Eco-risk Assessment and Source Apportionment in Urban River Sediment. Sci. Rep. 6, 1-9. DOI: https://doi.org/10.1038/srep23134

Yao, Y., Meng, X., Wu, C., Bao, L., Wang, F., Wu, F., Zeng, E., 2016. Tracking human footprints in Antarctica through passive sampling of polycyclic aromatic hydrocarbons in inland lakes. Environ. Pollut. 213, 412-419. DOI: https://doi.org/10.1016/j.envpol.2016.02.035

Zhang, Y., Wu, D., Yan, X., Guan, Y., 2016. Rapid solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples by a coated through-pore sintered titanium disk. Talanta 154, 400-408. DOI: https://doi.org/10.1016/j.talanta.2016.03.094

Cómo citar

APA

Amaringo, F., Narváez, J. F., Gómez-Arguello, M. A. & Molina, F. (2019). Contaminación en agua y sedimentos por hidrocarburos aromáticos policíclicos: Revisión de la dinámica y los métodos analíticos. Gestión y Ambiente, 22(1), 129–140. https://doi.org/10.15446/ga.v22n1.77874

ACM

[1]
Amaringo, F., Narváez, J.F., Gómez-Arguello, M.A. y Molina, F. 2019. Contaminación en agua y sedimentos por hidrocarburos aromáticos policíclicos: Revisión de la dinámica y los métodos analíticos. Gestión y Ambiente. 22, 1 (ene. 2019), 129–140. DOI:https://doi.org/10.15446/ga.v22n1.77874.

ACS

(1)
Amaringo, F.; Narváez, J. F.; Gómez-Arguello, M. A.; Molina, F. Contaminación en agua y sedimentos por hidrocarburos aromáticos policíclicos: Revisión de la dinámica y los métodos analíticos. Gest. Ambient. 2019, 22, 129-140.

ABNT

AMARINGO, F.; NARVÁEZ, J. F.; GÓMEZ-ARGUELLO, M. A.; MOLINA, F. Contaminación en agua y sedimentos por hidrocarburos aromáticos policíclicos: Revisión de la dinámica y los métodos analíticos. Gestión y Ambiente, [S. l.], v. 22, n. 1, p. 129–140, 2019. DOI: 10.15446/ga.v22n1.77874. Disponível em: https://revistas.unal.edu.co/index.php/gestion/article/view/77874. Acesso em: 18 nov. 2025.

Chicago

Amaringo, Fredy, Jhon Fredy Narváez, Mayra Alejandra Gómez-Arguello, y Francisco Molina. 2019. «Contaminación en agua y sedimentos por hidrocarburos aromáticos policíclicos: Revisión de la dinámica y los métodos analíticos». Gestión Y Ambiente 22 (1):129-40. https://doi.org/10.15446/ga.v22n1.77874.

Harvard

Amaringo, F., Narváez, J. F., Gómez-Arguello, M. A. y Molina, F. (2019) «Contaminación en agua y sedimentos por hidrocarburos aromáticos policíclicos: Revisión de la dinámica y los métodos analíticos», Gestión y Ambiente, 22(1), pp. 129–140. doi: 10.15446/ga.v22n1.77874.

IEEE

[1]
F. Amaringo, J. F. Narváez, M. A. Gómez-Arguello, y F. Molina, «Contaminación en agua y sedimentos por hidrocarburos aromáticos policíclicos: Revisión de la dinámica y los métodos analíticos», Gest. Ambient., vol. 22, n.º 1, pp. 129–140, ene. 2019.

MLA

Amaringo, F., J. F. Narváez, M. A. Gómez-Arguello, y F. Molina. «Contaminación en agua y sedimentos por hidrocarburos aromáticos policíclicos: Revisión de la dinámica y los métodos analíticos». Gestión y Ambiente, vol. 22, n.º 1, enero de 2019, pp. 129-40, doi:10.15446/ga.v22n1.77874.

Turabian

Amaringo, Fredy, Jhon Fredy Narváez, Mayra Alejandra Gómez-Arguello, y Francisco Molina. «Contaminación en agua y sedimentos por hidrocarburos aromáticos policíclicos: Revisión de la dinámica y los métodos analíticos». Gestión y Ambiente 22, no. 1 (enero 1, 2019): 129–140. Accedido noviembre 18, 2025. https://revistas.unal.edu.co/index.php/gestion/article/view/77874.

Vancouver

1.
Amaringo F, Narváez JF, Gómez-Arguello MA, Molina F. Contaminación en agua y sedimentos por hidrocarburos aromáticos policíclicos: Revisión de la dinámica y los métodos analíticos. Gest. Ambient. [Internet]. 1 de enero de 2019 [citado 18 de noviembre de 2025];22(1):129-40. Disponible en: https://revistas.unal.edu.co/index.php/gestion/article/view/77874

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Jessica Cardenas-Camacho, Angélica Elizabeth González-Reina, Yohana María Velasco-Santamaría. (2024). Identificación de biomarcadores en camarones expuestos a hidrocarburos aromáticos poli-cíclicos: una revisión sistemática. Caldasia, 46(3) https://doi.org/10.15446/caldasia.v46n3.99553.

Dimensions

PlumX

Visitas a la página del resumen del artículo

1916

Descargas

Los datos de descargas todavía no están disponibles.