Publicado
Resiliencia socioecológica y modelación dinámica de sistemas en sistemas acuáticos. Una revisión
Social-Ecological Resilience and System Dynamic Modeling in Aquatic Systems. A Review
DOI:
https://doi.org/10.15446/ga.v24n2.89176Palabras clave:
Sistemas dinámicos, modelación, sustentabilidad, ecosistemas (es)Dynamic systems, modeling, sustainability, ecosystems (en)
Descargas
Este artículo de revisión busca identificar las tendencias presentes en la utilización de modelos de simulación dinámica como herramienta de estudio multidisciplinar de la resiliencia socioecológica en ecosistemas acuáticos, las tendencias obtenidas de la revisión bibliográfica permiten reconocer la distribución geográfica, las dimensiones utilizadas en la construcción de los modelos, así como los enfoques de aplicación y las variables requeridas. Esta revisión fue elaborada a partir de la búsqueda sistemática de artículos relacionados en cuatro bases de datos, para un lapso de 10 años (2010-2020), a escala mundial. Como resultados se evidencia que, dentro de la clasificación establecida para los modelos de simulación dinámica, los modelos numéricos, predictivos y de eventos continuos muestran una tendencia de utilización mayor que los demás (entre el 50 y 70 %). De igual manera, frente a la resiliencia socioecológica los enfoques con mayor relación son el cambio climático, toma de decisiones y sustentabilidad; así mismo, se encontró que la mayor cantidad de publicaciones revisadas provienen de Europa (40 %), además de reconocer que para la construcción de modelos de simulación utilizados en el estudio de la resiliencia en ecosistemas acuáticos se utilizan preferentemente variables sociales, ecológicas y biofísicas, tanto de orden cuantitativo como cualitativo. Es por lo anterior, que se establece que los modelos de simulación dinámica asociados a la resiliencia socioecológica poseen un desarrollo temático orientado a la construcción de modelos mixtos que involucran variables multidimensionales para elaborar representaciones del fenómeno que permiten definir su comportamiento a escalas espacio-temporales distintas.
This review article seeks to identify trends in the use of dynamic simulation models as a tool for the multidisciplinary study of socioecological resilience in aquatic ecosystems. The trends obtained from the literature review allow us to recognize the geographic distribution, the dimensions used in the construction of the models, as well as the application approaches and the variables required. This review was elaborated from the systematic search of related articles in four databases, for a period of 10 years (2010-2020), worldwide. The results show that, within the classification established for dynamic simulation models, numerical, predictive and continuous event models show a higher utilization trend than the others (between 50 and 70 %). Likewise, with respect to socioecological resilience, the approaches with the greatest relationship are climate change, decision making and sustainability; likewise, it was found that the largest number of publications reviewed come from Europe (40 %), in addition to recognizing that for the construction of simulation models used in the study of resilience in aquatic ecosystems, social, ecological and biophysical variables, both quantitative and qualitative, are preferentially used. Therefore, it is established that the dynamic simulation models associated with social-ecological resilience have a thematic development oriented to the construction of mixed models that involve multidimensional variables to elaborate representations of the phenomenon that allow defining its behavior at different spatio-temporal scales.
Referencias
Becker, F., Folke, C., 1998. Linking social and ecological systems for resilience and sustainability. En: Becker, F., Folke, C. (Eds.), Linking social and ecological systems: management practices and social mechanisms for building resilience. Cambridge University Press, Cambridge, UK. pp. 1-26.
Beltrán, J., Rangel-Churio, O., 2012. Modelación hidrológica del humedal de Jaboque - Bogotá, D.C.(Colombia). Caldasia 35(1), 81-101.
Berkes, F., Seixas, C., 2005. Building resilience in lagoon social-ecological systems: a local-levels perspective. Ecosystems 8, 967-974. DOI: 10.1007/s10021-005-0140-4
Blair, P., Buytaert, W., 2016. Socio-hydrological modelling: a review asking “why, what and how?” Hydrol. Earth Syst. Sci. 20, 443-478. DOI: 10.5194/hess-20-443-2016
Bordóns, C., Ruiz, M., Limón, D., 2001. Teoría de sistemas. Universidad de Sevilla, Sevilla, España.
Brown, C., Seo, B., Rounsevell, M., 2019. Societal breakdown as an emergent property of large-scale behavioral models of land use change. Earth Syst. Dynam. 10, 809-845. DOI: 10.5194/esd-10-809-2019
Buchadas, A., Vaz, A., Honrado, J., Alagador, D., Bastos, R., Cabral, J., Santos, M., Vicente, J., 2017. Dynamic models in research and management of biological invasions. J. Environ. Manage. 196, 594-606. DOI: 10.1016/j.jenvman.2017.03.060
Carpenter, S., Booth, E., Gillon, S., Kucharik, C., Loheide, S., Mase, A., Motew, M., Qiu, J., Rissman, A., Seifert, J., Soylu, E., Turner, M., Wardropper, C., 2015. Plausible futures of a social-ecological system: Yahara watershed, Wisconsin, USA. Ecol. Soc. 20(2), 10. DOI: 10.5751/ES-07433-200210
Castillo-Villanueva, L., Velásquez-Torres, D., 2015. Sistemas complejos adaptativos, sistemas socio-ecológicos y resiliencia. Quivera 17(2), 11-32.
Cooper, G., Dearing, J., 2019. Modelling future safe and just operating spaces in regional social-ecological systems. Sci. Total Environ. 651(Part 2), 2105-2117. DOI: 10.1016/j.scitotenv.2018.10.118
Cuddington, K., Fortin, M.-J., Gerber, L., Hastings, A., Liebhold, A., O´Connor, M., Ray, C., 2013. Process-based models are required to manage ecological systems in a changing world. Ecosphere. 4(2), 1-12. DOI: 10.1890/ES12-00178.1
Cushman, S., McGarigal, K., 2019. Metrics and models for quantifying ecological resilience at landscape scales. Front. Ecol. Evol. 7, 440. DOI: 10.3389/fevo.2019.00440
De Souza, L., González del Rivero, O., 2001. Modelo de desarrollo sustentable en una comunidad rural mexiquense. Grupo para Promover la Educación y el Desarrollo Sustentable, México, DF.
Delgado Gutiérrez, J. 2002. Análisis sistémico y su aplicación a las comunidades humanas. CIE-DOSSAT, Madrid.
Deng, C., Wang, H., Zhang, W., Jiao, Z., 2018. Optimizing policy for balanced industrial profit and water pollution control under a complex socioecological system using a Multiagent-based model. Water 10(9), 1139. DOI: 10.3390/w10091139
Dolbeth, M., Crespo, D., Leston, S., Solan, M., 2019. Realistic scenarios of environmental disturbance lead to functionally important changes in benthic species-environment interactions. Mar. Environ. Res. 150, 104770. DOI: 10.1016/j.marenvres.2019.104770
Elshafei, Y., Sivapalan, M., Tonts, M., Hipsey, M., 2014. A prototype framework for models of socio-hydrology: identification of key feedback loops a parameterization approach. Hydrol. Earth Syst. Sci. 18, 2141-2166. DOI: 10.5194/hess-18-2141-2014
Essington, T., Ciannelli, L., Heppell, S., Levin, P., McClanahan, T., Micheli, F., Plagányi, E., van Putten, I., 2017. Empiricism and modeling for marine fisheries: advancing an interdisciplinary science. Ecosystems 20, 237-244. DOI: 10.1007/s10021-016-0073-0
Farhad, S., 2012. Los sistemas socio-ecológicos. Una aproximación conceptual y metodológica. Los costos de la crisis y alternativas en construcción. En: XIII Jornadas de Economía Crítica. Universidad de Sevilla. Sevilla, España. pp. 265-280.
Filgueira, R., Guyondet, T., Comeau, L., Grant, J., 2014. A fully-spatial ecosystem-DEB model of oyster (Crassostrea virginica) carrying capacity in the Richibucto Estuary, Eastern Canada. J. Mar. Syst. 136, 42-54. DOI: 10.1016/j.jmarsys.2014.03.015
Folke, C., 2003. Social-ecological resilience and behavioral responses. En: Biel, A., Hansson, B., Martensson, M. (Eds.), Individual and structural determinants of environmental practice. Ashgate Publishers, London. pp. 226-287. DOI: 10.4324/9781315252377-9
Folke, C., 2016. Resilience (Republished). Ecol. Soc. 21(4), 44. DOI: 10.5751/ES-09088-210444
Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C., Walker, B., Bengstoon, J., Berkes, F., Colding, J., Danell, K., Flakenmark, M., Gordon, L., Kasperson, R., Kautsky, N., Kinzig, A., Levin, S., Mäler, K.-G., Moberg, F., Ohlsson, P., Olsson, P., Östrom, E., Reid, W., Rockström, J., Savenije, H., Svedin, U., 2002. Resilience and sustainable development: Building adaptive capacity in a world of transformation. Edit Norstedts Tryckeri AB, Estocolmo, pp. 25-55.
Folke, C., Carpenter, S., Walker, B., Scheffer, M., Chapin, T., Rockström, J., 2010. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 15(4), 20. DOI: 10.5751/ES-03610-150420
Free, C., Mangin, T., García, J., Ojea, E., Burden, M., Costello, C., Gaines, S., 2020. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS ONE 15(3), e0224347. DOI: 10.1371/journal.pone.0224347
Fu, Y., Zhao, J., Peng, W., Zhu, G., Quan, Z., Li, C., 2018. Spatial modelling of the regulating function of the Huangqihai Lake wetland ecosystem. J. Hydrol. 564, 283-293. DOI: 10.1016/j.jhydrol.2018.07.017
Fulton, E., Blanchard, J., Melbourne-Thomas, J., Plagányi, E., Tulloch, V., 2019. Where the ecological Gaps Remain, a modelers’ perspective. Front. Ecol. Evol. 7, 424. DOI: 10.3389/fevo.2019.00424
Gao, L., Hailu, A., 2017. Site closure management strategies and the responsiveness of conservation outcomes in recreational fishing. J. Environ. Manage. 207, 10-22. DOI: 10.1016/j.jenvman.2017.11.003
Granco, G., Heier, J., Bergtold, J., Daniels, M., Sanderson, M., Sheshukov, A., Mather, M., Caldas, M., Ramsey, S., Lehrter II, R., Haukos, D., Gao, J., Chatterjee, S., Nifong, J., Aistrup, J., 2019. Evaluating environmental change and behavioral decision-making for sustainability policy using an agent-based model: A case study for the Smoky Hill River Watershed, Kansas. Sci. Total Environ. 695, 133769. DOI: 10.1016/j.scitotenv.2019.133769
Gunda, T., Turner, B., Tidwell, V., 2018. The influential role of sociocultural feedbacks on community-managed irrigation system behaviors during times of water stress. Water Resour. Res. 54(4), 2697-2714. DOI: 10.1002/2017WR021223
Halbe, J., Pahl-Wostl, C., Sendzimir, J., Adamowski, J., 2013. Towards adaptive and integrated management paradigms to meet the challenges of water governance. Water Soc. Technol. 67(11), 2651-2660. DOI: 10.2166/wst.2013.146
Hannon, B., Ruth, M., 2014. Modeling dynamic biological systems. 2a ed. Springer International Publishing, Nueva York. DOI: 10.1007/978-3-319-05615-9
Hay-Mele, B., Russo, L., D’Alelio, D., 2019. Combining marine ecology and economy to roadmap the integrated coastal management: A systematic literature review. Sustainability 11(16), 4393. DOI: 10.3390/su11164393
Hedelin, B., Evers, M., Alkan-Olsson, J., Jonson, A., 2017. Participatory modelling for sustainable development: Key issues derived from five cases of natural resource and disaster risk management. Environ. Sci. Policy 76, 185-196. DOI: 10.1016/j.envsci.2017.07.001
Herman, J., Quinn, J., Steinschneider, S., Giuliani, M., Fletcher, S., 2020. Climate adaptation as a control problem: Review and perspectives on dynamic water resources planning under uncertainty. Water Resour. Res. 56, e24389. DOI: 10.1029/2019WR025502
Hernández-Delgado, E., 2015. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies. Mar. Pollut. Bull. 101(1), 5-28. DOI: 10.1016/j.marpolbul.2015.09.018
Holling, C., 2001. Understanding the complexity of economic, ecological and social systems. Ecosystems 4, 390-405. DOI: 10.1007/s10021-001-0101-5
Holzhauer, S., Brown, C., Rounsevell, M., 2019. Modelling dynamic effects of multi-scale institutions on land use change. Reg. Environ. Change 19, 733-746. DOI: 10.1007/s10113-018-1424-5
Hughes, Z., Fenichel, E., Gerber, L., 2011. The potential impact of labor choices on the efficacy marine conservation strategies. PLoS ONE 6(8), e23722. DOI: 10.1371/journal.pone.0023722
Kuil, L., Evans, T., McCord, P., Salinas, J., Blöschl, G., 2018. Exploring the Influence of smallholders’ perceptions regarding water availability on crop choice and water allocation through socio-hydrological modeling. Water Resour. Res. 54(4), 2580-2604. DOI: 10.1002/2017WR021420
Lade, S., Niiranen, S., Hentati-Sundberg, J., Blenckner, T., Boonstra, W., Orach, K., Quaas, M., Österblom, H., Schlüter, M., 2015. An empirical model of the Baltic Sea reveals the importance of social dynamics for ecological regime shifts. Proc. Nalt. Am. Sci. USA 112, 11120-11125. DOI: 10.1073/pnas.1504954112
Li, T., Dong, Y., Liu, Z., 2020. A review of social-ecological system resilience: Mechanism, assessment and management. Sci. Total Environ. 723, 138113. DOI: 10.1016/j.scitotenv.2020.138113
Liu, D., 2019. Evaluating the dynamic resilience process of a regional water resource system through the nexus approach and resilience routing analysis. J. Hydrol. 578, 124028. DOI: 10.1016/j.jhydrol.2019.124028
Lu, S., Shang, Y., Li, W., Wu, X., Zhang, H., 2018. Basic theories and methods of watershed ecological regulation and control system. J. Water Clim. Change 9(2), 293-306. DOI: 10.2166/wcc.2018.051
Martin, R., Schlüter, M., 2015. Combining system dynamics and agent-based modeling to analyze social-ecological interactions-an example from modeling restoration of a shallow lake. Front. Environ. Sci. 3, 66. DOI: 10.3389/fenvs.2015.00066
Martorell-Barceló, M., Campos-Candela, A., Alós, J., 2018. Fitness consequences of fish circadian behavioral variation in exploited marine environments. PeerJ. 6, e4814. DOI: 10.7717/peerj.4814
Maskrey, S., Mount, N., Thorne, C., Dryden, I., 2016. Participatory modelling for stakeholder involvement in the development of flood risk management intervention options. Environ. Model. Softw. 82, 275-294. DOI: 10.1016/j.envsoft.2016.04.027
Miyasaka, T., Bao, Q., Okuro, T., Zhao, X., Takeuchi, K., 2017. Agent-based modeling of complex social-ecological feedback loops to assess multi-dimensional trade-offs in dryland ecosystem services. Landscape Ecol. 32, 707-727. DOI: 10.1007/s10980-017-0495-x
Mongruel, R., Prou, J., Ballé-Beganton, J., Lample, M., Van Houtte-Brunier, A., Réthoret, H., Pérez Agúndez, J., Vernier, F., Bordenave, P., Bacher, C., 2011. Modeling soft institutional change and the improvement of freshwater governance in the coastal zone. Ecol. Soc. 16(4), 15. DOI: 10.5751/ES-04294-160415
Mooij, W., van Wijk, D., Beusen, A., Brederveld, R., Chang, M., Cobben, M., DeAngelis, D., Downing, S., Green, P., Gsell, A., Huttunen, I., Janse, J., Janssen, A., Hengeweld, G., Kong, X., Kramer, L., Kuiper, J., Langan, B., Nolet, B., Nuijten, R., Strokal, M., Troost, T., van Dam, A., Teurlincx, S., 2019. Modeling water quality in the Anthropocene: Directions for the next- generation aquatic ecosystem models. Curr. Opin. Environ. Sustain. 36, 85-95. DOI: 10.1016/j.cosust.2018.10.012
Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A., Evellard, D., Faure, D., Garnier, E., Gimenez, O., Huneman, P., Jabot, F., Jarne, P., Joly., D., Julliard, R., Kéfi, S., Kergoat, G., Lavorei, S., Le Gall, L., Meslin, L., Morand, S., Morin, X., Morlon, H., Pinay, G., Pradel, R., Schurr, F., Thuiller, W., Loreau, M., 2015. Predictive ecology in a changing world. J. Appl. Ecol. 52(5), 1293-1310. DOI: 10.1111/1365-2664.12482
Müller, H., Hamilton, D., Doole, G., Abell, J., McBride, C., 2019. Economic and ecosystem costs and benefits of alternative land use and management scenarios in the Lake Rotorua, New Zealand, catchment. Glob. Environ. Change 54, 102-112. DOI: 10.1016/j.gloenvcha.2018.10.013
Nettier, B., Dobremez, L., Lavorel, S., Brunschwig, G., 2017. Resilience as a framework for analyzing the adaptation of mountain summer pasture systems to climate change. Ecol. Soc. 22(4), 25. DOI: 10.5751/ES-09625-220425
Newton, A., Cantarello, E., 2015. Restoration of forest resilience: An achievable goal? New For. 46, 645-668. DOI: 10.1007/s11056-015-9489-1
Nielsen, J., Thunberg, E., Holland, D., Schmidt, J., Fulton, E., Bastardie, F., Punt, A., Allen, I., Bartelings, H., Bertignac, M., Bethke, E., Bossier, S., Buckworth, R., Carpenter, G., Christensen, A., Christensen, V., Da-Rocha, J., Deng, R., Dichmont, J., Doering, R., Esteban, A., Fernandes, J., Frost, H., García, D., Gasche, L., Gascuel, D., Gourguet, S., Groeneveld, R., Guillén, J., Guyader, O., Hamon, K., Hoff, A., Horbowy, J., Hutton, T., Lehuta, S., Little, L., Lleonart, J., Macher, C., Mackinson, S., Mahevas, S., Marchal, P., Mato-Amboage, R., Mapstone, B., Maynou, F., Merzéréaud, M., Palacz, A., Pascoe, S., Paulrud, A., Plaganyi, E., Prellezo, R., Van Putten, E., Quuas, M., Ravn-Jonsen, L., Sánchez, S., SImons, S., Thébaud, O., Tomczak, M., Ulrich, C., van Dijk, D., Vermard, Y., Voss, R., Waldo, S., 2017. Integrated ecological-economic fisheries models-evaluation, review and challenges for implementation. Fish Fish. 19(1), 1-29. DOI: 10.1111/faf.12232
Ome Barrera, O., Zafra Mejía, C., 2018. Factores clave en procesos de biorremediación para la depuración de aguas residuales. Una revisión. Rev. U.D.C.A Act. & Div. Cient. 21(2), 573-585. DOI: 10.31910/rudca.v21.n2.2018.1037
Pérez-Maqueo, M., Delfín, C., Fregoso, A., Equihua, E., 2006. Modelos de simulación para la elaboración y evaluación de los programas de servicios ambientales hídricos. Gac. Ecol. 78, 65-84.
Perrone, A., Inam, A., Albano, R., Adamowski, J., Sole, A., 2020. A participatory system dynamic modeling approach to facilitate collaborative flood risk management: A case study in the Bradano River (Italy). J. Hydrol. 580, 124354. DOI: 10.1016/j.jhydrol.2019.124354
Ruiz-Ballesteros, E., 2011. Social-ecological resilience and community-based tourism: An approach from Agua Blanca, Ecuador. Tour. Manag. 32(3), 655-666. DOI: 10.1016/j.tourman.2010.05.021
Saba, G., Goldsmith, K., Cooley, S., Grosse, D., Meseck, S., Miller, A., Phelan, B., Poach, M., Renault, R., St. Laurent, K., Teste, J., Weis, J., Zimmerman, R., 2019. Recommended priorities for research on ecological impacts of ocean coastal acidification in the U.S. Mid- Atlantic. Estuar. Coast. Shelf Sci. 225, 106188. DOI: 10.1016/j.ecss.2019.04.022
Samal, N., Wollheim, W., Zuidema, S., Stewart, R., Zhou, Z., Mineau, M., Borsuk, M., Gardner, K., Glidden, S., Huang, T., Lutz, D., Mavrommati, G., Thorn, A., Wake, C., Huber, M., 2017. A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change. Ecol. Soc. 22(4), 18. DOI: 10.5751/ES-09662-220418
Serpetti, N., Baudron, A., Burrows, M., Payne, B., Helaouët, P., Fernandes, P., Heymans, J., 2017. Impact of ocean warming on sustainable fisheries management informs the ecosystem approach to fisheries. Sci. Rep. 7, 13438. DOI: https://doi.org/10.1038/s41598-017-13220-7
Shoemaker, D., BenDor, T., Meentemeyer, R., 2018. Anticipating trade-offs between urban patterns and ecosystem service production: Scenario analyses of sprawl alternatives for a rapidly urbanizing region. Comput. Environ. Urban Syst. 74, 114-125. DOI: 10.1016/j.compenvurbsys.2018.10.003
Sivapalan, M., Blöschl, G., 2015. Time scale interactions and the coevolution of humans and water. Water Resour. Res. 51(9), 6988-7022. DOI: 10.1002/2015WR017896
Subrahmanyam, S., Adams, A., Raman, A., Hodkings, D., Heffernan, M., 2017. Ecological modelling of a wetland for phytoremediation Cu, Zn and Mn in a gold-copper mine site using Typha domingensis (Poales: Typhaceae) near Orange, NSW, Australia. Eur. J. Ecol. 3(2), 77-91. DOI: 10.1515/eje-2017-0016
Tieskens, K., Shaw, B., Haer, T., Schulp, C., Verburg, P., 2017. Cultural landscapes of the future: Using agent-based modeling to discuss and develop the use and management of the cultural landscape of South West Devon. Landscape Ecol. 32, 2113-2132. DOI: 10.1007/s10980-017-0502-2
Volenzo, T., Odiyo, J., 2018. Ecological public health and participatory planning and assessment dilemmas: The case of water resources management. Int. J. Environ. Res. Public Health 15(8), 1635. DOI: 10.3390/ijerph15081635
Wu, P., Mengersen, K., McMahon, K., Kendrick, G., Chartrand, K., York, P., Rasheed, M., Caley, M., 2017. Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience. Nat. Commun. 8, 1263. DOI: 10.1038/s41467-017-01306-9
Yue, T.-X, Jorgensen, S., Larocque, G., 2011. Progress in global ecological modeling. Ecol. Model. 222(14), 2172-2177. DOI: 10.1016/j.ecolmodel.2010.06.008
Zafra, C., Temprano, J., Tejero, I., 2017. The physical factors affecting heavy metals accumulated in the sediment deposited on road surfaces in dry weather: A review. Urban Water J. 14(6), 639-649. DOI: 10.1080/1573062X.2016.1223320
Zhang, J., Sun, J., Ma, B., Du, W., 2017. Assessing the ecological vulnerability of the upper reaches of the Minjiang River. PLoS ONE 12(7), e0181825. DOI: 10.1371/journal.pone.0181825
Zhou, B., Wu, J., Anderies, J., 2019. Sustainable landscapes and landscape sustainability: A tale of two concepts. Landscape Urban Plann. 189, 274-284. DOI: 10.1016/j.landurbplan.2019.05.005
Zia, A., Bomblies, A., Schroth, A., Koliba, C., Isles, P., Tsai, Y., Mohammed, I., Bucini, G., Clemins, P., Turnbull, S., Rodgers, M., Hamed, A., Beckage, B., Winter, J., Adair, C., Galford, G., Rizzo, D., Van Houten, J., 2016. Coupled impacts of climate and land use change across a river-lake continuum: insights from an integrated assessment model of Lake Champlain Missisquoi Basin, 2000-2040. Environ. Res. Lett. 11, 114026. DOI: 10.1088/1748-9326/11/11/114026
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2021 Gestión y Ambiente
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos que sean publicados en la revista Gestión y Ambiente, también serán publicados en el sitio web http://www.revistas.unal.edu.co/index.php/gestion/index y en formatos electrónicos como PDF, HTML, XML, entre otros. Además, en diferentes redes sociales de difusión del conocimiento. Gestión y Ambiente adopta directrices de ética por Committee on Publication Ethics (COPE) sobre buenas prácticas de conducta (evitar conductas como plagio, falsificación, autoría ficticia, entre otros), describe conflictos de interés o en competencia, contribuciones de autoría y fuentes de financiación. Todo lo publicado se considerará propiedad de la revista Gestión y Ambiente, pero pueden usarse bajo la licencia Creative Commons “Reconocimiento-No Comercial-Compartir Igual International (BY-NC-SA) 4.0”