Publicado
Normality of k-Matching Polytopes of Bipartite Graphs
Normalidad del politopo de k-emparejamientos de grafos bipartitos
DOI:
https://doi.org/10.15446/recolma.v57n2.115853Palabras clave:
Polytopes, matchings, matching polytopes, normal polytopes, bipartite graphs (en)Politopos, emparejamientos, politopos de emparejamiento, politopos normales, grafos bipartitos (es)
Descargas
The k-matching polytope of a graph is the convex hull of all its matchings of a given size k when they are considered as indicator vectors. In this paper, we prove that the k-matching polytope of a bipartite graph is normal, that is, every integer point in its t-dilate is the sum of t integers points of the original polytope. This generalizes the known fact that Birkhoff polytopes are normal. As a preliminary result, we prove that for bipartite graphs the k-matching polytope is equal to the fractional k-matching polytope, having thus the H-representation of the polytope. This generalizes the Birkhoff-Von Neumann Theorem which establish that every doubly stochastic matrix can be written as a convex combination of permutation matrices.
El politopo de k-emparejamientos de un grafo es la envolvente convexa de todos sus emparejamientos de un tamaño dado k cuando estos son considerados como vectores indicadores. En este artículo, demostramos que el politopo de k-emparejamientos de un grafo bipartito es normal, es decir, todo punto entero en su t-dilatación es la suma de t puntos enteros del politopo original. Esto generaliza el resultado conocido de que los politopos de Birkhoff son normales. Como resultado preliminar, demostramos que para grafos bipartitos el politopo de k-emparejamientos es igual al politopo de k-emparejamientos fraccional, teniendo así la H-representación del politopo. Esto generaliza el Teorema de Birkhoff-Von Neumann que establece que toda matriz doblemente estocástica puede ser escrita como una combinación convexa de matrices de permutación
Referencias
R. E. Behrend, Fractional perfect b-matching polytopes i: General theory, Linear Algebra and its Applications 439 (2013), no. 12, 3822-3858. DOI: https://doi.org/10.1016/j.laa.2013.10.001
W. Bruns and J. Gubeladze, Polytopes, rings, and k-theory, Springer, 2009. DOI: https://doi.org/10.1007/b105283
D. A. Cox, C. Haase, T. Hibi, and A. Higashitani, Integer decomposition property of dilated polytopes, The Electronic Journal of Combinatorics 21 (2014), no. 4, P4.28. DOI: https://doi.org/10.37236/4204
D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, vol. 124, American Mathematical Soc., 2011. DOI: https://doi.org/10.1090/gsm/124
D-Z. Du and K-I. Ko, Theory of computational complexity, vol. 58, John Wiley & Sons, 2011.
J. Gill and S. Linusson, The k-assignment polytope, Discrete Optimization 6 (2009), no. 2, 148-161. DOI: https://doi.org/10.1016/j.disopt.2008.10.003
J. Gubeladze, Normal polytopes: Between discrete, continuous, and random, Journal of Pure and Applied Algebra 227 (2023), no. 2, 107187. DOI: https://doi.org/10.1016/j.jpaa.2022.107187
J. De Loera, J. Rambau, and F. Santos, Triangulations: structures for algorithms and applications, vol. 25, Springer Science & Business Media, 2010. DOI: https://doi.org/10.1007/978-3-642-12971-1
L. Lovasz and M. D. Plummer, Matching theory, vol. 367, American Mathematical Soc., 2009. DOI: https://doi.org/10.1090/chel/367
J. C. Torres, The slack model in the study of polytopes, Ph.D. thesis, Universidad de los Andes, 2020.
