Publicado

2011-01-01

Embedded CMC Hypersurfaces on Hyperbolic Spaces

Palabras clave:

Principal curvatures, Hyperbolic spaces, Constant mean curvature, CMC, Embeddings (es)

Descargas

Autores/as

  • Oscar Perdomo Central Connecticut State University
In this paper we will prove that for every integer $n>1$, there exists a real number $H_0<-1$ such that every $H\in (-\infty,H_0)$ can be realized as the mean curvature of an embedding of $H^{n-1}\times S^1$ in the $n+1$-dimensional space $H^{n+1}$. For $n=2$ we explicitly compute the value $H_0$. For a general value $n$, we provide a function $\xi_n$ defined on $(-\infty,-1)$, which is easy to compute numerically, such that, if $\xi_n(H)>-2\pi$, then, $H$ can be realized as the mean curvature of an embedding of $H^{n-1}\times S^1$ in the $(n+1)$-dimensional space $H^{n+1}$.
Untitled Document
Embedded CMC Hypersurfaces on Hyperbolic Spaces

Hipersuperficies encajadas con CMC en el espacio hiperbólico
OSCAR PERDOMO1

1Central Connecticut State University, New Britain, United States. Email:perdomoosm@ccsu.edu 


Abstract

In this paper we will prove that for every integer n>1, there exists a real number H0<-1 such that every H∈ (-∞,H0) can be realized as the mean curvature of an embedding of Hn-1\times S1 in the n+1-dimensional space Hn+1. For n=2 we explicitly compute the value H0. For a general value n, we provide a function ξn defined on (-∞,-1), which is easy to compute numerically, such that, if ξn(H)>-2π, then, Hcan be realized as the mean curvature of an embedding of Hn-1\times S1 in the (n+1)-dimensional space Hn+1.

Key words: Principal curvatures, Hyperbolic spaces, Constant mean curvature, CMC, Embeddings.


2000 Mathematics Subject Classification: 58A10, 53C42.

Resumen

En este artículo demostramos que para cada número entero n>1, existe un número real H0<-1, tal que todo H∈ (-∞,H0) puede obtenerse como la curvatura media de un encaje de la variedad Hn-1\times S1 en el espacio hiperbólico n+1 dimensional Hn+1. Para n=2 calcularemos explícitamente el valor H0. Para otros valores de n, daremos una función ξn definida en el intervalo (-∞,-1), la cual es fácil de calcular numéricamente, con la propiedad de que si ξn(H)>-2π, entonces el número H puede obtenerse como la curvatura media de un encaje de la variedad Hn-1\times S1 en el espacio hiperbólico n+1 dimensional Hn+1.

Palabras clave: Curvaturas principales, espacio hiperbólico, curvatura media constante, CMC, encajes.


Texto completo disponible en PDF


References

[1] M. Do Carmo and M. Dajczer, `Rotational Hypersurfaces in Spaces of Constant Curvature´, Trans. Amer. Math. Soc. 277, (1983), 685-709.

[2] O. Perdomo, `Embedded Constant Mean Curvature Hypersurfaces of Spheres´, ArXiv March 10, 2009. arXiv:0903.1321

[3] I. Sterling, `A Generalization of a Theorem of Delaunay to Rotational W-Hypersurfaces of σl-type in Hn+1 andSn+1´, Pacific J. Math 127, 1 (1987), 187-197.

[4] B. Wu, `On Complete Hypersurfaces with two Principal Distinct Principal Curvatures in a Hyperbolic Space´,Balkan J. Geom. Appl. 15, 2 (2010), 134-145.

(Recibido en octubre de 2010. Aceptado en abril de 2011)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv45n1a06, 
    AUTHOR  = {Perdomo, Oscar}, 
    TITLE   = {{Embedded CMC Hypersurfaces on Hyperbolic Spaces}}, 
    JOURNAL = {Revista Colombiana de Matemáticas}, 
    YEAR    = {2011}, 
    volume  = {45}, 
    number  = {1}, 
    pages   = {81-96} 
}

Cómo citar

APA

Perdomo, O. (2011). Embedded CMC Hypersurfaces on Hyperbolic Spaces. Revista Colombiana de Matemáticas, 45(1), 81–96. https://revistas.unal.edu.co/index.php/recolma/article/view/28064

ACM

[1]
Perdomo, O. 2011. Embedded CMC Hypersurfaces on Hyperbolic Spaces. Revista Colombiana de Matemáticas. 45, 1 (ene. 2011), 81–96.

ACS

(1)
Perdomo, O. Embedded CMC Hypersurfaces on Hyperbolic Spaces. rev.colomb.mat 2011, 45, 81-96.

ABNT

PERDOMO, O. Embedded CMC Hypersurfaces on Hyperbolic Spaces. Revista Colombiana de Matemáticas, [S. l.], v. 45, n. 1, p. 81–96, 2011. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/28064. Acesso em: 22 ene. 2025.

Chicago

Perdomo, Oscar. 2011. «Embedded CMC Hypersurfaces on Hyperbolic Spaces». Revista Colombiana De Matemáticas 45 (1):81-96. https://revistas.unal.edu.co/index.php/recolma/article/view/28064.

Harvard

Perdomo, O. (2011) «Embedded CMC Hypersurfaces on Hyperbolic Spaces», Revista Colombiana de Matemáticas, 45(1), pp. 81–96. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/28064 (Accedido: 22 enero 2025).

IEEE

[1]
O. Perdomo, «Embedded CMC Hypersurfaces on Hyperbolic Spaces», rev.colomb.mat, vol. 45, n.º 1, pp. 81–96, ene. 2011.

MLA

Perdomo, O. «Embedded CMC Hypersurfaces on Hyperbolic Spaces». Revista Colombiana de Matemáticas, vol. 45, n.º 1, enero de 2011, pp. 81-96, https://revistas.unal.edu.co/index.php/recolma/article/view/28064.

Turabian

Perdomo, Oscar. «Embedded CMC Hypersurfaces on Hyperbolic Spaces». Revista Colombiana de Matemáticas 45, no. 1 (enero 1, 2011): 81–96. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/28064.

Vancouver

1.
Perdomo O. Embedded CMC Hypersurfaces on Hyperbolic Spaces. rev.colomb.mat [Internet]. 1 de enero de 2011 [citado 22 de enero de 2025];45(1):81-96. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/28064

Descargar cita

Visitas a la página del resumen del artículo

144

Descargas

Los datos de descargas todavía no están disponibles.