Remarks on weakly continuous functions in banach spaces
Palabras clave:
Finite sequence, polynomial, real function (es)Descargas
Let E be a Banach space over the real.s and let E* be the dual space. Le t = (∝1 , …, ∝n) be a finite sequence of non-negative integers and u = (u1, …,un) a finite sequence of elements in E*. The notation u∝ = u1 u1∝1 … u1∝1 … un∝n is standard and will used throughout. We will write
|∝| = ∝1 + … + ∝n . Any real valued function in E of the form
P = ∑ (|∝|≤n) a∝ u∝ , a∝ a real number, is said to be a polynomial. Clearly, every polynomial is weakly continuous.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 1968 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.