Publicado
On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces
DOI:
https://doi.org/10.15446/recolma.v50n1.62187Palabras clave:
Cauchy problem, local and global well-posedness, Benjamin-Ono equation (en)Descargas
We prove that the initial value problem associated to a perturbation of the Benjamin-Ono equation or Chen-Lee equation ut + uux + βHuxx + (Hux - uxx) = 0, where x ∈ T, t > 0, η > 0 and H denotes the usual Hilbert transform, is locally and globally well-posed in the Sobolev spaces Hs(T) for any s > - ½. We also prove some ill-posedness issues when s < -1.
DOI: https://doi.org/10.15446/recolma.v50n1.62187
On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces
Sobre el buen planteamiento de la ecuación de Chen-Lee en espacios de Sobolev periódicos
Ricardo Pastrán1, Oscar Riaño1
1 Universidad Nacional de Colombia, Bogotá, Colombia. rapastranr@unal.edu.co, ogrianoc@unal.edu.co
Abstract
We prove that the initial value problem associated to a perturbation of the Benjamin-Ono equation or Chen-Lee equation ut + uux + β H uxx + η (H ux - uxx) = 0, where x ∈ T, t > 0, η > 0 and H denotes the usual Hilbert transform, is locally and globally well-posed in the Sobolev spaces Hs(T) for any s > -½. We also prove some ill-posedness issues when s < -1.
Keywords: Cauchy problem, local and global well-posedness, Benjamin-Ono equation.
2010 Mathematics Subject Classification: 34A12, 35Q35.
Resumen
Probamos que el problema de valor inicial asociado a una perturbación de la ecuación de Benjamín-Ono o ecuación de Chen-Lee ut + uux + β H uxx + η (H ux - uxx) = 0, donde x ∈ T, t > 0, η > 0 y H denota la transformada de Hilbert usual, es localmente y globalmente bien planteado en espacios de Sobolev Hs(T) para cualquier s > -½. También probamos un tipo de mal planteamiento cuando s < -1.
Palabras claves: Problema de Cauchy, buen planteamiento local y global, ecuación de Benjamín-Ono.
Texto completo disponible en PDF
References
[1] H. A. Biagioni, J. L. Bona, R. Iório, and M. Scialom, On the Korteweg-de Vries-Kuramoto-Sivashinsky equation, Adv. Diff. Eq. 1 (1996).
[2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolutons equations. ii. the KdV equations, Geom. Funct. Anal. 3 (1993).
[3] H. H. Chen and Y. C. Lee, Nonlinear dynamical models of plasma turbulence, Phys. Scr. T2/1 (1982), no. 1, 41-47.
[4] H. H. Chen, Y. C. Lee, and S. Qian, A study of nonlinear dynamical models of plasma turbulence, Phys. Fluids B 11 (1989).
[5] _______, A turbulence model with stochastic soliton motion, J. Math. Phys. 31 (1990).
[6] D. B. Dix, Temporal asymptotic behavior of solutions of the Benjamin-Ono-Burgers equation, J. Diff. Eq. 97 (1991).
[7] _______, Nonuniqueness and uniqueness in the initial value problem for Burgers' equation, SIAM J. Math. Anal. 1 (1996), no. 1, 1-17.
[8] O. Duque, Sobre una versión bidimensional de la ecuación Benjamin-Ono generalizada, PhD Thesis, Universidad Nacional de Colombia, 2014.
[9] S. A. Esfahani, High dimensional nonlinear dispersive models, PhD Thesis, IMPA, 2008.
[10] B. F. Feng and T. Kawahara, Temporal evolutions and stationary waves for dissipative Benjamin-Ono equation, Phys. D 139 (2000).
[11] C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573-603.
[12] L. Molinet, J. C. Saut, and N. Tzvetkov, ll-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal. 33 (2001), no. 4, 982-988.
[13] R. Pastrán, On a perturbation of the Benjamin-Ono equation, Nonlinear Anal. 93 (2013).
[14] D. Pilod, Sharp well-posedness results for the Kuramoto-Velarde equation, Commun. Pure Appl. Anal. 7 (2008), no. 4, 867-881.
(Recibido: julio de 2015 Aceptado: enero de 2016)
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Ricardo Pastrán, Oscar Riaño. (2024). Well-posedness results for a family of dispersive–dissipative Benjamin–Ono equations. Applicable Analysis, , p.1. https://doi.org/10.1080/00036811.2024.2442510.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2016 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.