Publicado
Local unitary representations of the braid group and their applications to quantum computing
DOI:
https://doi.org/10.15446/recolma.v50n2.62211Palabras clave:
topological quantum computation, braid group representations, localizations, quantum algebra (en)Descargas
We provide an elementary introduction to topological quantum computation based on the Jones representation of the braid group. We first cover the Burau representation and Alexander polynomial. Then we discuss the Jones representation and Jones polynomial and their application to anyonic quantum computation. Finally we outline the approximation of the Jones polynomial by a quantum computer and explicit localizations of braid group representations.
DOI: https://doi.org/10.15446/recolma.v50n2.62211
Local unitary representations of the braid group and their applications to quantum computing
Colleen Delaney1, Eric C. Rowell2, Zhenghan Wang1, 3
1 University of California Santa Barbara, Santa Barbara, CA, U.S.A. cdelaney@math.ucsb.edu
2 Texas A&M University, College Station, TX, U.S.A. rowell@math.tamu.edu
3 Microsoft Station Q, Santa Barbara, CA, U.S.A. zhenghwa@microsoft.com
Abstract
We provide an elementary introduction to topological quantum computation based on the Jones representation of the braid group. We first cover the Burau representation and Alexander polynomial. Then we discuss the Jones representation and Jones polynomial and their application to anyonic quantum computation. Finally we outline the approximation of the Jones polynomial by a quantum computer and explicit localizations of braid group representations.
Keywords: topological quantum computation, braid group representations, localizations, quantum algebra.
Mathematics Subject Classification: 81P86, 20F36.
Texto completo disponible en PDF
References
[1] D. Aharonov, V. Jones, and Z. Landau, A polynomial quantum algorithm for approximating the Jones polynomial, Algorithmica 5 (2009), no. 3, 395-421.
[2] S. Bigelow, The Burau representation is not faithful for n = 5, Geometry & Topology 3 (1999), 397-404, arXiv:math/9904100v2.
[3] M. Brannan and B. Collins, Dual bases in Temperley-Lieb algebras, quantum groups, and a question of Jones, (2016), arXiv:1608.03885v2 [math.QA].
[4] J. Conway and A. Jones, Trigonometric Diophantine equations (on vanishing sums of roots of unity), Acta Arithmetica 30 (1976), no. 3, 229-240.
[5] M. Epple, Orbits of asteroids, a braid, and the first link invariant, Math. Intelligencer 20 (1998), no. 1, 45-52.
[6] J. Franko, E. C. Rowell, and Z. Wang, Extraspecial 2-groups and images of braid group representations, J. Knot Theory Ramifications 15 (2006), no. 4, 1-15.
[7] M. H. Freedman, A. Kitaev, and Z. Wang, Simulation of topological field theories by quantum computers, Comm. Math. Phys. 227 (2002), no. 3, 587-603.
[8] M. H. Freedman, M. J. Larsen, and Z. Wang, A modular functor which is universal for quantum computation, Comm. Math. Phys. 227 (2002), no. 3, 605-622.
[9] M.H. Freedman, M. J. Larsen, and Z. Wang, The two-eigenvalue problem and density of Jones representation of braid group, Comm. Math. Phys. 228 (2002), no. 1, 177-199.
[10] W. Fulton and J.Harris, Representation theory, a first course, Springer, New York, 1991.
[11] V.F.R. Jones, Braid groups, Hecke algebras and type II1 factors, Geometric methods in operator algebras 123 (1983), 242-273.
[12] V.F.R. Jones, Hecke-algebra representations of braid groups and link polynomials, Ann. Math. 126 (1987), 335-288.
[13] S.P. Jordan and P.W. Shor, Estimating Jones polynomials is a complete problem for one clean qubit, Quantum Information and Computation 8 (2008), no. 8, 681-714.
[14] V. Kliuchnikov, A. Bocharov, and K. M. Svore., Asymptotically optimal topological quantum compiling, Physical Review Letters 112 (2014), no. 140504, 335-288.
[15] G. Kuperberg, How hard is it to approximate the Jones polynomial?, (2009), arXiv:0908.0512v2 [quant-ph].
[16] M.J. Larsen and E.C. Rowell, An algebra-level version of a link-polynomial identity of Lickorish, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 3, 623-638.
[17] M.J. Larsen, E.C. Rowell, and Z. Wang, The N-eigenvalue problem and two applications, Int. Math. Res. Not. 2005 (2005), no. 64, 3987-4018.
[18] D. Naidu and E.C. Rowell, A finiteness property for braided fusion categories, Algebr. Represent. Theory 15 (2011), no. 5, 837-855.
[19] E. C. Rowell, R. Stong, and Z. Wang, On classification of modular tensor categories, Comm. Math. Phys. 292 (2009), no. 2, 343-389.
[20] E. C. Rowell and Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012), no. 3, 595-615, arXiv:1009.0241v2 [math.RT].
[21] E.C. Rowell, Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010), no. 1, 165-175.
[22] D.L. Vertigan, On the computational complexity of Tutte, Jones, Homfly and Kauffman invariants, Dissertation, University Of Oxford, 1991.
[23] Z. Wang, Topological quantum computation, American Mathematical Society, Providence (2008), http://www.math.ucsb.edu/zhenghwa/data/course/cbms.pdf.
Recibido: julio de 2016 Aceptado: noviembre de 2016
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Li-Wei Yu. (2018). Local unitary representation of braids and N-qubit entanglements. Quantum Information Processing, 17(3) https://doi.org/10.1007/s11128-018-1811-3.
2. Emil Génetay Johansen, Tapio Simula. (2021). Fibonacci Anyons Versus Majorana Fermions: A Monte Carlo Approach to the Compilation of Braid Circuits in SU(2)k Anyon Models. PRX Quantum, 2(1) https://doi.org/10.1103/PRXQuantum.2.010334.
3. Eric Rowell, Zhenghan Wang. (2018). Mathematics of topological quantum computing. Bulletin of the American Mathematical Society, 55(2), p.183. https://doi.org/10.1090/bull/1605.
4. Shawn X Cui, Kevin T Tian, Jennifer F Vasquez, Zhenghan Wang, Helen M Wong. (2019). The search for leakage-free entangling Fibonacci braiding gates. Journal of Physics A: Mathematical and Theoretical, 52(45), p.455301. https://doi.org/10.1088/1751-8121/ab488e.
5. Muhammad Ilyas, Shawn Cui, Marek Perkowski. (2022). Ternary logic design in topological quantum computing. Journal of Physics A: Mathematical and Theoretical, 55(30), p.305302. https://doi.org/10.1088/1751-8121/ac7b55.
6. Zhi-Cheng Yang, Konstantinos Meichanetzidis, Stefanos Kourtis, Claudio Chamon. (2019). Scrambling via braiding of nonabelions. Physical Review B, 99(4) https://doi.org/10.1103/PhysRevB.99.045132.
7. Sergio Albeverio, Slavik Rabanovich. (2019). On a class of unitary representations of the braid groups B3 and B4. Bulletin des Sciences Mathématiques, 153, p.35. https://doi.org/10.1016/j.bulsci.2019.01.014.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2016 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.