Publicado
On the continuity of partial actions of Hausdorff groups on metric spaces
Sobre la continuidad de acciones parciales de grupos de Hausdorff en espacios métricos
DOI:
https://doi.org/10.15446/recolma.v1n52.74521Palabras clave:
partial action, separately continuity, Hausdorff groups (en)acción parcial, continuidad separada, grupos de Hausdorff (es)
Descargas
Referencias
F. Abadie, Enveloping actions and takai duality for partial actions, Journal of Func. Anal. 197 (2003), 14-67.
H. Becker and A. Kechris, The Descriptive Set Theory of Polish Group
Actions, London Math. Soc. Lect. Notes, 1996.
K. Choi and Y. Lim, Transitive partial actions of groups, Period. Math.
Hung. 56 (2008), no. 2, 169-181.
K. Mc Clanahan, k-theory for partial crossed products by discrete groups, J. Funct. Anal. 130 (1995), 77-117.
M. Dokuchaev and M. Khrypchenko, Partial cohomology of groups, J. Algebra 427 (2015), 142-182.
M. Dokuchaev, B. Novikov, and H. Pinedo, The partial schur multiplier
of a group, J. Algebra 392 (2013), 199-225.
R. Exel, Partial actions of groups and actions of inverse semigroups, Proc. Am. Math. Soc. 126 (1998), no. 12, 3481-3494.
S. Gao, Invariant Descriptive Set Theory, Chapmann & Hall, 2009.
J. Gómez, H. Pinedo, and C. Uzcátegui, The open mapping principle for
partial actions of polish groups, J. Math. Anal. Appl. 462 (2018), no. 1,
-346.
J. Hoffmann-Jorgensen and F. Topsoe, Analytic spaces and their application, in analytic sets., Academic Press 37 (1980), 311-340.
J. Kellendonk and M. V. Lawson, Partial actions of groups, Internat. J.
Algebra Comput. 14 (2004), no. 1, 87-114.
H. Pinedo, Partial projective representations and the partial schur multiplier: a survey, Bol. Mat. 22 (2015), no. 2, 167-175.
H. Pinedo and C. Uzcátegui, Borel globalization of partial actions of polish groups, To appear in Archive for Mathematical Logic.
H. Pinedo and C. Uzcátegui, Polish globalization of polish group partial actions, Math. Log. Quart. 63 (2017), no. 6, 481-490.
J. C. Quigg and I. Raeburn, Characterizations of crossed products by partial actions, J. Operator Theory 37 (1997), 311-340.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. J. Gómez, H. Pinedo, C. Uzcátegui. (2018). The open mapping principle for partial actions of Polish groups. Journal of Mathematical Analysis and Applications, 462(1), p.337. https://doi.org/10.1016/j.jmaa.2018.02.015.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2018 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.