Publicado
Existence of Unique and Global Asymptotically Stable Almost Periodic Solution of a Discrete Predator-Prey System with Beddington-DeAngelis Functional Response and Density Dependent
Existencia de una única solución casi periódica global asintóticamente estable de un sistema Depredador-Presa con respuesta funcional Beddington-DeAngelis y densamente dependiente
DOI:
https://doi.org/10.15446/recolma.v1n52.74564Palabras clave:
Density dependent predator, Beddington-DeAngelis functional response, discrete predator-prey, almost periodic solution (en)Densamente dependiente depredador, respuesta fun- cional Beddington-DeAngelis, depredador-presa discreto, solución casi periódica (es)
Descargas
Referencias
R. P. Agarwall, Difference Equations and Inequalities: Theory, Methods
and Applications, Marcel Dekker, Inc., New York.
R. P. Agarwall and P.J.Y. Wong, Advance Topics in Difference Equations,
Kluwer, Dordrecht.
J. R. Beddington, Mutual interference between parasities of predators and
its effect on searching efficiency, J. Animal. Ecol 44 (1975), 331-340.
R. S. Cantrel and C. Cosner, On the dynamics of predator-prey models
with Beddington-DeAngelis functional response, J. Math. Anal. Appl. 257
(2001), 206-222.
R. S. Cantrel and C. Cosner, Effects of domain size on the persistence of populations in a diffusive food chain model with DeAngelis-Beddington functional response, Nat. Resour. Modelling 14 (2011), 335-367.
Y. Chen and Z. Zhou, Stable periodic solution of a discrete periodic Lotka-Volterra competition system, J. Math. Anal. Appl. 277 (2003), 358-366.
C. Cosner, D. L. DeAngelis, J. S. Ault, and D. B. Olson, Effects of spatial
grouping on the functional response of predator, Theoret. Population Biol.
(1999), 65-75.
D. L. DeAngelis, R. A. Goldstein, and R. V. Neill, A model for trophic
interaction, Ecology 56 (1975), 881-892.
M. Fan and K. Wang, Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system, Math. Comput. Modelling 35 (2002), no. 9,10.
Q. Fang, X. Li, and M. Cao, Dynamics of a discrete predator-prey system with Beddington-DeAngelis function response, Appl. Math. 3 (2012), 389-394.
H. I. Freedman, Deterministic Mathematics Models in Population Ecology, Marcel Dekker, Inc., New York.
H. F. Huo and W. T. Li, Stable periodic solution of the discrete periodic
Leslie-Gower predator-prey model, Math. Comput. Modelling 40 (2004),
-269.
T. W. Hwang, Uniqueness of limit cycles of the predator-prey system
with Beddington-DeAngelis functional response, J. Math. Anal. Appl. 281
(2003), 395-401.
T. W. Hwang, Global analysis of th predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl. 290 (2004), 113-122.
P. Kratina, M. Vos, A. Bateman, and B. R. Anholt, Functional response
modified by predator density, Oecologia 159 (2009), 425-433.
H. Li and Z. Lu, Stability of ratio-dependent delayed predator-prey system with density regulation, J. Biomath 20 (2005), 264-272.
H. Li and Y. Takeuchi, Stability for ratio-dependent predator-prey system with density dependent, Proceedings of the 70th Conference on Biological Dynamics System and Stability of Differential Equations.World Academic Union I (2010), 144-147.
H. Li and Y. Takeuchi, Dynamics of the density dependent predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl. 374 (2011), 644-654.
H. Li and Y. Takeuchi, Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response, Dyn. Sys. Ser. B 20 (2015), no. 4, 1117-1134.
Y. Li, T. Zhang, and Y. Ye, On the existence and stability of a unique
almost periodic sequence solution in discrete predator-prey models with
time delays, Appl. Math. Modelling 35 (2011), 5448-5459.
Z. Li and F. Chen, Almost periodic solutions of a discrete almost periodic logistic equation, Math. and Comp. Modelling 50 (2009), 254-259.
J. D. Murray, Mathematical Biology, Springer-Verlag, New York.
N. M. Pelen, A. F. Güvenilir, and B. Kaymakcalan, Necessary and sufficient condition for the periodic solution of predator-prey system with
Beddington-DeAngelis type functional response, Advances in Difference
Equations 15 (2016), 1-19.
N. M. Pelen, A. F. Güvenilir, and B. Kaymakcalan, Some results on predator-prey dynamic systems with Beddington-DeAngelis type functional response on the time scale calculus, Dynamic Systems and Applications 26 (2017), 167-182.
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific Series on Nonlinear Science. World Scientific, Singapore.
J. A. Vucetich, R. O. Peterson, and C. L. Schaeffer, The effect of prey and predator densities on wolf predation.
J. Zhang and J. Wang, Periodic solutions for discrete predator-prey sys-
tems with the Beddington-DeAngelis functional response.
S. N. Zhang and G. Zheng, Almost periodic solutions of delay difference systems.
Z. Zhou and X. Zou, Stable periodic solutions in a discrete periodic logistic equations.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. G. S. Mahapatra, P. K. Santra, Ebenezer Bonyah, Viorel-Puiu Paun. (2021). Dynamics on Effect of Prey Refuge Proportional to Predator in Discrete‐Time Prey‐Predator Model. Complexity, 2021(1) https://doi.org/10.1155/2021/6209908.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2018 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.