Publicado

2018-07-01

Inductive lattices of totally composition formations

Retículos inductivos de formaciones totalmente compositivas

DOI:

https://doi.org/10.15446/recolma.v52n2.77156

Palabras clave:

Finite group, formation of groups, satellite of formation, τ-closed totally composition formation, inductive lattice of formations (en)
Grupo finito, formación de grupos, satélite de formación, formación de composición totalmente τ-cerrada, retículo inductivo de formaciones (es)

Autores/as

  • Aleksandr Tsarev Jeju National Universit
Let τ be a subgroup functor such that all subgroups of every finite group G contained in τ(G) are subnormal in G. In this paper, we give a simple proof of the fact that the lattice of all τ-closed totally composition formations of finite groups is inductive.
Sea τ un funtor de subgrupo de modo que todos los subgrupos de cualquier grupo finito G contenido en τ(G) son subnormales en G. En este artículo, damos una demostración simple de que el retículo de todas las formaciones de composición totalmente τ-cerradas de los grupos finitos es inductivo.

Referencias

J. A. Cabrera and I. Gutiérrez-García, Sobre clases de grupos finitos solubles, Matemáticas: Enseñanza Universitaria XII (2004), no. 2, 53–68, (in Spanish).

K. Doerk and T. Hawkes, Finite soluble groups, De Gruyter Expositions in Mathematics, 4, Walter de Gruyter, Berlin, New York, 1992.

W. Gaschütz, Zur theorie der endlichen auflösbaren gruppen, Mathematische Zeitschrift 80 (1963), no. 4, 300–305.

W. Guo, Structure theory for canonical classes of finite groups, SpringerVerlag Berlin Heidelberg, 2015, 359 p.

W. Guo and A. N. Skiba, Two remarks on the identities of lattices of ω-local and ω-composition formations of finite groups, Russian Math. 46 (2002), no. 5, 12–20.

V. G. Safonov, On the modularity of the lattice of τ-closed totally saturated formations of finite groups, Ukrainian Math. Journal 58 (2006), no. 6, 967– 973.

V. G. Safonov, On a question of the theory of totally saturated formations of finite groups, Algebra Colloq. 15 (2008), no. 1, 119–128.

V. G. Safonov, On modularity of the lattice of totally saturated formations of finite groups, Comm. Algebra 35 (2011), no. 11, 3495–3502.

L. A. Shemetkov and A. N. Skiba, Formations of Algebraic Systems. Sovremennaya Algebra, Nauka, Moscow, 256 p. (in Russian), 1989.

A. N. Skiba, Algebra of formations, Belaruskaya Navuka, Minsk, 240 p. (in Russian), 1997.

A. N. Skiba and L. A. Shemetkov, Multiply L-composition formations of finite groups, Ukrainian Math. Journal 52 (2000), no. 6, 898–913.

A. Tsarev, Laws of the lattices of foliated formations of T-groups, Rend. Circ. Mat. Palermo, II. Ser., to appear. DOI: 10.1007/s12215-018-0369-3, 2018.

A. Tsarev, On the maximal subformations of partially composition formations of finite groups, Bol. Soc. Mat. Mex., to appear. DOI: 10.1007/s40590-018-0205-y, 2018.

A. Tsarev and N. N. Vorob'ev, Lattices of composition formations of finite groups and the laws, J. Algebra Appl. 17 (2018), no. 5, 1850084 (17 pages).

A. Tsarev, T. Wu, and A. Lopatin, On the lattices of multiply composition formations of finite groups, Bull. Int. Math. Virt. Institute (former Bull. Soc. Math. Banja Luka) 6 (2016), 219–226.

A. A. Tsarev and N. N. Vorob'ev, On a question of the theory of partially composition formations, Algebra Colloq. 21 (2014), no. 3, 437–447.

N. N. Vorob'ev, On one question of the theory of local classes of finite groups, Problems in Algebra. Proc. F. Scorina Gomel State Univ. 14 (1999), 132–140.

N. N. Vorob'ev, On complete sublattices of formations of finite groups, Russian Math. 46 (2002), no. 5, 12–20.

N. N. Vorob'ev, Algebra of Classes of Finite Groups, P. M. Masherov Vitebsk State University, Vitebsk, 322 p. (in Russian), 2012.

N. N. Vorob'ev and A. N. Skiba, On the distributivity of the lattice of solvable totally local Fitting classes, Math. Notes 67 (2000), no. 5, 563– 571.

N. N. Vorob'ev, A. N. Skiba, and A. A. Tsarev, Laws of the lattices of partially composition formations, Siberian Math. Journal 62 (2018), no. 1, 17–22.

N. N. Vorob'ev and A. A. Tsarev, On the modularity of a lattice of τclosed n-multiply ω-composition formations, Ukrainian Math. Journal, 62 (2010), no. 4, 453–463.

Cómo citar

APA

Tsarev, A. (2018). Inductive lattices of totally composition formations. Revista Colombiana de Matemáticas, 52(2), 161–169. https://doi.org/10.15446/recolma.v52n2.77156

ACM

[1]
Tsarev, A. 2018. Inductive lattices of totally composition formations. Revista Colombiana de Matemáticas. 52, 2 (jul. 2018), 161–169. DOI:https://doi.org/10.15446/recolma.v52n2.77156.

ACS

(1)
Tsarev, A. Inductive lattices of totally composition formations. rev.colomb.mat 2018, 52, 161-169.

ABNT

TSAREV, A. Inductive lattices of totally composition formations. Revista Colombiana de Matemáticas, [S. l.], v. 52, n. 2, p. 161–169, 2018. DOI: 10.15446/recolma.v52n2.77156. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/77156. Acesso em: 27 dic. 2025.

Chicago

Tsarev, Aleksandr. 2018. «Inductive lattices of totally composition formations». Revista Colombiana De Matemáticas 52 (2):161-69. https://doi.org/10.15446/recolma.v52n2.77156.

Harvard

Tsarev, A. (2018) «Inductive lattices of totally composition formations», Revista Colombiana de Matemáticas, 52(2), pp. 161–169. doi: 10.15446/recolma.v52n2.77156.

IEEE

[1]
A. Tsarev, «Inductive lattices of totally composition formations», rev.colomb.mat, vol. 52, n.º 2, pp. 161–169, jul. 2018.

MLA

Tsarev, A. «Inductive lattices of totally composition formations». Revista Colombiana de Matemáticas, vol. 52, n.º 2, julio de 2018, pp. 161-9, doi:10.15446/recolma.v52n2.77156.

Turabian

Tsarev, Aleksandr. «Inductive lattices of totally composition formations». Revista Colombiana de Matemáticas 52, no. 2 (julio 1, 2018): 161–169. Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/77156.

Vancouver

1.
Tsarev A. Inductive lattices of totally composition formations. rev.colomb.mat [Internet]. 1 de julio de 2018 [citado 27 de diciembre de 2025];52(2):161-9. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/77156

Descargar cita

CrossRef Cited-by

CrossRef citations4

1. Aleksandr Tsarev. (2019). On the lattice of all totally composition formations of finite groups. Ricerche di Matematica, 68(2), p.693. https://doi.org/10.1007/s11587-019-00433-3.

2. Aleksandr Tsarev, Andrei Kukharev. (2020). Algebraic lattices of solvably saturated formations and their applications. Boletín de la Sociedad Matemática Mexicana, 26(3), p.1003. https://doi.org/10.1007/s40590-020-00290-3.

3. I. P. Los, V. G. Safonov. (2024). On the properties of the lattice of τ-closed totally ω-composition formations. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series, 60(3), p.183. https://doi.org/10.29235/1561-2430-2024-60-3-183-194.

4. N. N. Vorob’ev, I. I. Staselka, A. Hojagulyyev. (2021). Separated Lattices of Multiply $ \sigma $-Local Formations. Siberian Mathematical Journal, 62(4), p.586. https://doi.org/10.1134/S0037446621040029.

Dimensions

PlumX

Visitas a la página del resumen del artículo

500

Descargas

Los datos de descargas todavía no están disponibles.