Publicado
Inductive lattices of totally composition formations
Retículos inductivos de formaciones totalmente compositivas
DOI:
https://doi.org/10.15446/recolma.v52n2.77156Palabras clave:
Finite group, formation of groups, satellite of formation, τ-closed totally composition formation, inductive lattice of formations (en)Grupo finito, formación de grupos, satélite de formación, formación de composición totalmente τ-cerrada, retículo inductivo de formaciones (es)
Descargas
Referencias
J. A. Cabrera and I. Gutiérrez-García, Sobre clases de grupos finitos solubles, Matemáticas: Enseñanza Universitaria XII (2004), no. 2, 53–68, (in Spanish).
K. Doerk and T. Hawkes, Finite soluble groups, De Gruyter Expositions in Mathematics, 4, Walter de Gruyter, Berlin, New York, 1992.
W. Gaschütz, Zur theorie der endlichen auflösbaren gruppen, Mathematische Zeitschrift 80 (1963), no. 4, 300–305.
W. Guo, Structure theory for canonical classes of finite groups, SpringerVerlag Berlin Heidelberg, 2015, 359 p.
W. Guo and A. N. Skiba, Two remarks on the identities of lattices of ω-local and ω-composition formations of finite groups, Russian Math. 46 (2002), no. 5, 12–20.
V. G. Safonov, On the modularity of the lattice of τ-closed totally saturated formations of finite groups, Ukrainian Math. Journal 58 (2006), no. 6, 967– 973.
V. G. Safonov, On a question of the theory of totally saturated formations of finite groups, Algebra Colloq. 15 (2008), no. 1, 119–128.
V. G. Safonov, On modularity of the lattice of totally saturated formations of finite groups, Comm. Algebra 35 (2011), no. 11, 3495–3502.
L. A. Shemetkov and A. N. Skiba, Formations of Algebraic Systems. Sovremennaya Algebra, Nauka, Moscow, 256 p. (in Russian), 1989.
A. N. Skiba, Algebra of formations, Belaruskaya Navuka, Minsk, 240 p. (in Russian), 1997.
A. N. Skiba and L. A. Shemetkov, Multiply L-composition formations of finite groups, Ukrainian Math. Journal 52 (2000), no. 6, 898–913.
A. Tsarev, Laws of the lattices of foliated formations of T-groups, Rend. Circ. Mat. Palermo, II. Ser., to appear. DOI: 10.1007/s12215-018-0369-3, 2018.
A. Tsarev, On the maximal subformations of partially composition formations of finite groups, Bol. Soc. Mat. Mex., to appear. DOI: 10.1007/s40590-018-0205-y, 2018.
A. Tsarev and N. N. Vorob'ev, Lattices of composition formations of finite groups and the laws, J. Algebra Appl. 17 (2018), no. 5, 1850084 (17 pages).
A. Tsarev, T. Wu, and A. Lopatin, On the lattices of multiply composition formations of finite groups, Bull. Int. Math. Virt. Institute (former Bull. Soc. Math. Banja Luka) 6 (2016), 219–226.
A. A. Tsarev and N. N. Vorob'ev, On a question of the theory of partially composition formations, Algebra Colloq. 21 (2014), no. 3, 437–447.
N. N. Vorob'ev, On one question of the theory of local classes of finite groups, Problems in Algebra. Proc. F. Scorina Gomel State Univ. 14 (1999), 132–140.
N. N. Vorob'ev, On complete sublattices of formations of finite groups, Russian Math. 46 (2002), no. 5, 12–20.
N. N. Vorob'ev, Algebra of Classes of Finite Groups, P. M. Masherov Vitebsk State University, Vitebsk, 322 p. (in Russian), 2012.
N. N. Vorob'ev and A. N. Skiba, On the distributivity of the lattice of solvable totally local Fitting classes, Math. Notes 67 (2000), no. 5, 563– 571.
N. N. Vorob'ev, A. N. Skiba, and A. A. Tsarev, Laws of the lattices of partially composition formations, Siberian Math. Journal 62 (2018), no. 1, 17–22.
N. N. Vorob'ev and A. A. Tsarev, On the modularity of a lattice of τclosed n-multiply ω-composition formations, Ukrainian Math. Journal, 62 (2010), no. 4, 453–463.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Aleksandr Tsarev. (2019). On the lattice of all totally composition formations of finite groups. Ricerche di Matematica, 68(2), p.693. https://doi.org/10.1007/s11587-019-00433-3.
2. Aleksandr Tsarev, Andrei Kukharev. (2020). Algebraic lattices of solvably saturated formations and their applications. Boletín de la Sociedad Matemática Mexicana, 26(3), p.1003. https://doi.org/10.1007/s40590-020-00290-3.
3. I. P. Los, V. G. Safonov. (2024). On the properties of the lattice of τ-closed totally ω-composition formations. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series, 60(3), p.183. https://doi.org/10.29235/1561-2430-2024-60-3-183-194.
4. N. N. Vorob’ev, I. I. Staselka, A. Hojagulyyev. (2021). Separated Lattices of Multiply $ \sigma $-Local Formations. Siberian Mathematical Journal, 62(4), p.586. https://doi.org/10.1134/S0037446621040029.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2018 Revista Colombiana de Matemáticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.