Publicado
Cyclic derivations, species realizations and potentials
Derivaciones cíclicas, realización por especies y potenciales
DOI:
https://doi.org/10.15446/recolma.v53nsupl.84083Palabras clave:
species realization, mutation, quiver with potential, strongly primitive (en)realización por especies, mutación, carcaj con potencial, fuertemente primitivo (es)
Descargas
Referencias
D. López-Aguayo (2018), A note on species realizations and nondegeneracy of potentials, Journal of Algebra and Its Applications 18 (2019), no. 2.
R. Bautista and D. López-Aguayo, Potentials for some tensor algebras, arXiv:1506.05880.
L. Demonet, Mutations of group species with potentials and their representations. Applications to cluster algebras, arXiv:1003.5078.
H. Derksen, J. Weyman, and A. Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Math. 14 (2008), no. 1, 59-119, arXiv:0704.0649.
J. Geuenich and D. Labardini-Fragoso, Species with potential arising from surfaces with orbifold points of order 2, Part I: one choice of weights, Mathematische Zeitschrift 286 (2017), no. 3-4, 1065-1143, arXiv:1507.04304.
D. Labardini-Fragoso and A. Zelevinsky, Strongly primitive species with potentials I: Mutations, Boletín de la Sociedad Matemática Mexicana (Third series) 22 (2016), no. 1, 47-115, arXiv:1306.3495.
B. Nguefack, Potentials and Jacobian algebras for tensor algebras of bimodules, arXiv:1004.2213.
S. Roman, Field theory, Graduate Texts in Mathematics, 158. Springer-Verlag New York, 2006.
G.-C. Rota, B. Sagan, and P. R. Stein, A cyclic derivative in noncommutative algebra, Journal of Algebra 64 (1980), 54-75.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2019 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.