Publicado

2019-12-11

Connes-Landi spheres are homogeneous spaces

DOI:

https://doi.org/10.15446/recolma.v53nsupl.84099

Palabras clave:

Noncommutative geometry, quantum homogeneous space, compact quantum group, Connes-Landi deformation, O-deformation (en)
Geometría no conmutativa, espacio cuántico homogéneo, grupo cuántico compacto, deformación de Connes-Landi, O-deformación (es)

Descargas

Autores/as

  • Mitsuru Wilson Instytut Matematyczny
In this paper, we review some recent developments of compact quantum groups that arise as θ-deformations of compact Lie groups of rank at least two. A θ-deformation is merely a 2-cocycle deformation using an action of a torus of dimension higher than 2. Using the formula (Lemma 5.3) developed in [11], we derive the noncommutative 7-sphere in the sense of Connes and Landi [3] as the fixed-point subalgebra.
En este artículo nosotros revisamos algunos desarrollos recientes de grupos cuánticos compactos que surgen en θ-deformaciones de grupos compactos de Lie de rango al menos dos. Una θ-deformación es simplemente una deformación por 2-cociclo, usando una acción de un toro de dimensión superior a 2. Usando la fórmula (Lemma 5.3) desarrollada en [11], nosotros derivamos la 7-esfera no conmutativa, en el sentido de Connes y Landi [3], como la subálgebra de puntos fijos.

Referencias

Alain Connes, Noncommutative geometry, Academic Press, 1995.

Alain Connes and Michael Dubois-Violette, Noncommutative finite-dimensional manifolds. i. spherical manifolds and related examples, Communications in Mathematical Physics 230 (2002), no. 3, 539-579.

Alain Connes and Giovanni Landi, Noncommutative manifolds: the instanton algebra and isospectral deformations, Communications in Mathematical Physics 221 (2001), no. 1, 141-159.

Chiara Pagani Giovanni Landi and Cesare Reina., A hopf bundle over a quantum four-sphere from the symplectic group, Communications in Mathematical Physics 263 (2006), no. 1, 65-88.

Giovanni Landi and Walter van Suijlekom, Principal fibrations from noncommutative spheres, Communications in Mathematical Physics 260 (2005), no. 1, 203-225.

Marc Rieffel, Deformation quantization for actions of rd, Memoirs of the American Mathematical Society 506 (1993), x+93 pp.

Marc Rieffel, Non-commutative tori - a case study of non-commutative differentiable manifolds, Contemporary Mathematics 145 (1993), 465-491.

Andrzj Sitarz, Rieffel's deformation quantization and isospectral deformations, International Journal of Theoretical Physics 40 (2001), no. 10, 1693-1696.

Joseph Várilly, Quantum symmetry groups of noncommutative spheres, Communications in Mathematical Physics 221 (2001), no. 3, 511-523.

Shuzhou Wang, Deformations of compact quantum groups via rieffel's quantization, Communications in Mathematical Physics 178 (1996), no. 1, 747-764.

Mitsuru Wilson, Quantum symmetries of the deformation quantization of compact lie groups, Submitted to Letters in Mathematical Physics (2019).

Stanislaw. Woronowicz, Compact matrix pseudogroups, Communication in Mathematical Physics 111 (1987), no. 1, 613-665.

Cómo citar

APA

Wilson, M. (2019). Connes-Landi spheres are homogeneous spaces. Revista Colombiana de Matemáticas, 53(supl), 257–271. https://doi.org/10.15446/recolma.v53nsupl.84099

ACM

[1]
Wilson, M. 2019. Connes-Landi spheres are homogeneous spaces. Revista Colombiana de Matemáticas. 53, supl (dic. 2019), 257–271. DOI:https://doi.org/10.15446/recolma.v53nsupl.84099.

ACS

(1)
Wilson, M. Connes-Landi spheres are homogeneous spaces. rev.colomb.mat 2019, 53, 257-271.

ABNT

WILSON, M. Connes-Landi spheres are homogeneous spaces. Revista Colombiana de Matemáticas, [S. l.], v. 53, n. supl, p. 257–271, 2019. DOI: 10.15446/recolma.v53nsupl.84099. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/84099. Acesso em: 22 ene. 2025.

Chicago

Wilson, Mitsuru. 2019. «Connes-Landi spheres are homogeneous spaces». Revista Colombiana De Matemáticas 53 (supl):257-71. https://doi.org/10.15446/recolma.v53nsupl.84099.

Harvard

Wilson, M. (2019) «Connes-Landi spheres are homogeneous spaces», Revista Colombiana de Matemáticas, 53(supl), pp. 257–271. doi: 10.15446/recolma.v53nsupl.84099.

IEEE

[1]
M. Wilson, «Connes-Landi spheres are homogeneous spaces», rev.colomb.mat, vol. 53, n.º supl, pp. 257–271, dic. 2019.

MLA

Wilson, M. «Connes-Landi spheres are homogeneous spaces». Revista Colombiana de Matemáticas, vol. 53, n.º supl, diciembre de 2019, pp. 257-71, doi:10.15446/recolma.v53nsupl.84099.

Turabian

Wilson, Mitsuru. «Connes-Landi spheres are homogeneous spaces». Revista Colombiana de Matemáticas 53, no. supl (diciembre 11, 2019): 257–271. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/84099.

Vancouver

1.
Wilson M. Connes-Landi spheres are homogeneous spaces. rev.colomb.mat [Internet]. 11 de diciembre de 2019 [citado 22 de enero de 2025];53(supl):257-71. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/84099

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Carolina Neira Jiménez. (2024). Pseudodifferential Operators on Noncommutative Tori: A Survey. La Matematica, 3(3), p.1218. https://doi.org/10.1007/s44007-024-00122-0.

Dimensions

PlumX

Visitas a la página del resumen del artículo

225

Descargas

Los datos de descargas todavía no están disponibles.