Publicado

2019-07-01

On a family of groups generated by parabolic matrices

Sobre una familia de grupos generados por matrices parabólicas

DOI:

https://doi.org/10.15446/recolma.v53n2.85541

Palabras clave:

modular group, parametrized modular group, singular set, discrete groups, Chebyshev polynomials (en)
grupo modular, grupo modular parametrizado, conjunto singular, grupos discretos, polinomios de Chebyshev (es)

Descargas

Autores/as

  • Christian Pommerenke Technische Universität Berlin
  • Margarita Toro Universidad Nacional de Colombia
We study various aspects of the family of groups generated by the parabolic matrices A(t1 ζ), ... , A(tm ζ) where A(z) = ( 1 z
0 1 ) and by the elliptic matrix ( 0 -1  1 0 ). The elements of the matrices W in such groups can be computed by a recursion formula. These groups are special cases of the generalized parametrized modular groups introduced in [16].
We study the sets {z : tr W(z) ∈ [-2; +2]} [13] and their critical points and geometry, furthermore some finite index subgroups and the discretness of subgroups.
Estudiamos algunos aspectos de la familia de grupos generados por matrices parabólicas A(t1 ζ), ... , A(tm ζ) donde A(z) = ( 1 z
0 1 ) y por la matriz elíptica ( 0 -1  1 0 ). Los elementos de las matrices W en tales grupos se pueden calcular mediante una fórmula de recurrencia. Estos grupos son casos especiales de la generalización del grupo modular parametrizado estudiado en [16].
Estudiamos los conjuntos {z : tr W(z) ∈ [-2; +2]} [13] y sus puntos críticos y geometría, así como también algunos subgrupos de índice finito y la discreticidad de tales subgrupos.

Referencias

A.F. Beardon, The geometry of discrete groups, Springer, New York, 1983.

N. Bircan and Ch. Pommerenke, On chebyshev polynomials and GL2; Z=pZ, Bull.Math.Soc.Sci.Math.Roumanie 55 (2012), 353-364.

P.M. Cohn, A presentation of SL2 for euclidean imaginary quadratic number fields, Mathematik 15 (1968), 156-163.

A. Eremenko and W.K. Hayman, On the length of lemniscates, Mich. Math.J. 46 (1999), no. 2, 409-415.

M. Fekete, Über den transfiniten durchmesser ebener punktmengen ii, Math.Z. 32 (1930), 215-221.

B. Fine and M. Newman, The normal subgroup structure of the Picard group, Trans. Am. Math. Soc. 302 (1987), 769-786.

J. Gilman and L. Keen, Discreteness criteria and the hyperbolic geometry of palindromes, Conform.Geom.Dyn. 13 (2009), 76-90.

J. Gilman and P. Waterman, Classical two-parabolic t-schottky groups, J. Anal. Math. 98 (2006), 1-42.

T. Jörgensen, On discrete groups of möbius transformations, Amer. J. Math 98 (1976), 739-749.

S. Lang, Introduction to diophantine approximation, Springer, New York, 1995.

C. MacLachlan and A.W. Reid, The arithmetic of hyperbolic 3-manifolds, Springer, New York, 2003.

D. Mejia and Ch. Pommerenke, Analytic families of homomorphisms into PSL(2, C), Comput. Meth. Funct. Th. 10 (2010), 81-96.

D. Mejia, Ch. Pommerenke, and M. Toro, On the parametrized modular group, J.Anal. Math. 127 (2015), 109-128.

Ch. Pommerenke and M. Toro, On the two-parabolic subgroups of SL(2, C), Rev. Colomb. Mat. 45 (2011), no. 1, 37-50.

Ch. Pommerenke and M. Toro, Free subgroups of the parametrized modular group, Rev. Colomb. Mat. 49 (2015), no. 2, 269-279.

Ch. Pommerenke and M. Toro, A generalization of the parametrized modular group, Ann. Acad. Sci. Fenn. Math. 43 (2018), no. 1, 509-519.

Ch. Pommerenke and M. Toro, Parabolic representations of 3-bridge knot groups, Preprint (2019).

R. Riley, Parabolic representations of knot groups I, Proc.London Math.Soc. 3 (1972), 217-242.

R. Riley, Seven excellent knots, London Math.Soc. Lecture Notes 48 (1982), 81-151.

R. Riley, Nonabelian representations of 2-bridge knot groups, Quart. J. Math. Oxford (2) 35 (1984), 191-208.

R. Riley, Holomorphically parametrized families of subgroups of SL(2, C), Mathematika 32 (1985), 248-264.

Cómo citar

APA

Pommerenke, C. y Toro, M. (2019). On a family of groups generated by parabolic matrices. Revista Colombiana de Matemáticas, 53(2), 221–236. https://doi.org/10.15446/recolma.v53n2.85541

ACM

[1]
Pommerenke, C. y Toro, M. 2019. On a family of groups generated by parabolic matrices. Revista Colombiana de Matemáticas. 53, 2 (jul. 2019), 221–236. DOI:https://doi.org/10.15446/recolma.v53n2.85541.

ACS

(1)
Pommerenke, C.; Toro, M. On a family of groups generated by parabolic matrices. rev.colomb.mat 2019, 53, 221-236.

ABNT

POMMERENKE, C.; TORO, M. On a family of groups generated by parabolic matrices. Revista Colombiana de Matemáticas, [S. l.], v. 53, n. 2, p. 221–236, 2019. DOI: 10.15446/recolma.v53n2.85541. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/85541. Acesso em: 28 ene. 2025.

Chicago

Pommerenke, Christian, y Margarita Toro. 2019. «On a family of groups generated by parabolic matrices». Revista Colombiana De Matemáticas 53 (2):221-36. https://doi.org/10.15446/recolma.v53n2.85541.

Harvard

Pommerenke, C. y Toro, M. (2019) «On a family of groups generated by parabolic matrices», Revista Colombiana de Matemáticas, 53(2), pp. 221–236. doi: 10.15446/recolma.v53n2.85541.

IEEE

[1]
C. Pommerenke y M. Toro, «On a family of groups generated by parabolic matrices», rev.colomb.mat, vol. 53, n.º 2, pp. 221–236, jul. 2019.

MLA

Pommerenke, C., y M. Toro. «On a family of groups generated by parabolic matrices». Revista Colombiana de Matemáticas, vol. 53, n.º 2, julio de 2019, pp. 221-36, doi:10.15446/recolma.v53n2.85541.

Turabian

Pommerenke, Christian, y Margarita Toro. «On a family of groups generated by parabolic matrices». Revista Colombiana de Matemáticas 53, no. 2 (julio 1, 2019): 221–236. Accedido enero 28, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/85541.

Vancouver

1.
Pommerenke C, Toro M. On a family of groups generated by parabolic matrices. rev.colomb.mat [Internet]. 1 de julio de 2019 [citado 28 de enero de 2025];53(2):221-36. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/85541

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

203

Descargas

Los datos de descargas todavía no están disponibles.