Publicado
On a family of groups generated by parabolic matrices
Sobre una familia de grupos generados por matrices parabólicas
DOI:
https://doi.org/10.15446/recolma.v53n2.85541Palabras clave:
modular group, parametrized modular group, singular set, discrete groups, Chebyshev polynomials (en)grupo modular, grupo modular parametrizado, conjunto singular, grupos discretos, polinomios de Chebyshev (es)
Descargas
0 1 ) and by the elliptic matrix ( 0 -1 1 0 ). The elements of the matrices W in such groups can be computed by a recursion formula. These groups are special cases of the generalized parametrized modular groups introduced in [16].
We study the sets {z : tr W(z) ∈ [-2; +2]} [13] and their critical points and geometry, furthermore some finite index subgroups and the discretness of subgroups.
0 1 ) y por la matriz elíptica ( 0 -1 1 0 ). Los elementos de las matrices W en tales grupos se pueden calcular mediante una fórmula de recurrencia. Estos grupos son casos especiales de la generalización del grupo modular parametrizado estudiado en [16].
Estudiamos los conjuntos {z : tr W(z) ∈ [-2; +2]} [13] y sus puntos críticos y geometría, así como también algunos subgrupos de índice finito y la discreticidad de tales subgrupos.
Referencias
A.F. Beardon, The geometry of discrete groups, Springer, New York, 1983.
N. Bircan and Ch. Pommerenke, On chebyshev polynomials and GL2; Z=pZ, Bull.Math.Soc.Sci.Math.Roumanie 55 (2012), 353-364.
P.M. Cohn, A presentation of SL2 for euclidean imaginary quadratic number fields, Mathematik 15 (1968), 156-163.
A. Eremenko and W.K. Hayman, On the length of lemniscates, Mich. Math.J. 46 (1999), no. 2, 409-415.
M. Fekete, Über den transfiniten durchmesser ebener punktmengen ii, Math.Z. 32 (1930), 215-221.
B. Fine and M. Newman, The normal subgroup structure of the Picard group, Trans. Am. Math. Soc. 302 (1987), 769-786.
J. Gilman and L. Keen, Discreteness criteria and the hyperbolic geometry of palindromes, Conform.Geom.Dyn. 13 (2009), 76-90.
J. Gilman and P. Waterman, Classical two-parabolic t-schottky groups, J. Anal. Math. 98 (2006), 1-42.
T. Jörgensen, On discrete groups of möbius transformations, Amer. J. Math 98 (1976), 739-749.
S. Lang, Introduction to diophantine approximation, Springer, New York, 1995.
C. MacLachlan and A.W. Reid, The arithmetic of hyperbolic 3-manifolds, Springer, New York, 2003.
D. Mejia and Ch. Pommerenke, Analytic families of homomorphisms into PSL(2, C), Comput. Meth. Funct. Th. 10 (2010), 81-96.
D. Mejia, Ch. Pommerenke, and M. Toro, On the parametrized modular group, J.Anal. Math. 127 (2015), 109-128.
Ch. Pommerenke and M. Toro, On the two-parabolic subgroups of SL(2, C), Rev. Colomb. Mat. 45 (2011), no. 1, 37-50.
Ch. Pommerenke and M. Toro, Free subgroups of the parametrized modular group, Rev. Colomb. Mat. 49 (2015), no. 2, 269-279.
Ch. Pommerenke and M. Toro, A generalization of the parametrized modular group, Ann. Acad. Sci. Fenn. Math. 43 (2018), no. 1, 509-519.
Ch. Pommerenke and M. Toro, Parabolic representations of 3-bridge knot groups, Preprint (2019).
R. Riley, Parabolic representations of knot groups I, Proc.London Math.Soc. 3 (1972), 217-242.
R. Riley, Seven excellent knots, London Math.Soc. Lecture Notes 48 (1982), 81-151.
R. Riley, Nonabelian representations of 2-bridge knot groups, Quart. J. Math. Oxford (2) 35 (1984), 191-208.
R. Riley, Holomorphically parametrized families of subgroups of SL(2, C), Mathematika 32 (1985), 248-264.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2020 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.