On the normality of operators
Palabras clave:
Normal operators, Hilbert space, Hermitian operators, 2000 Mathematics Subject Classification, Primary: 47A15, Secondary: 47B20, 47A63 (en)Descargas
Abstract. In this paper we will investigate the normality in (WN) and (Y) classes.
Referencias
C. K. Fong & V. I. Istratescu, Some characterizations of hermitian operators and related classes of operators I, Proc. Amer. Math. Soc., 76 (1979), 107-112.
M. A. Kaashoek & M. R. F. Smyth, On operators T such that ƒ(T) is Riesz or meromorphic, Proc. Royal Irish Acad., 72 (1972), 81-87.
F. Kittaneh, Linear operators for which (ReT)2 ≤ |T|2, Tamkang J. Math., 11 no. 1 (1980), 11-115.
F. Kittaneh, On the structure of polynomially norm al operators, Bull. Austral. Math. Soc., 30 (1984), 11-18.
S. Mecheri, Some variants of Weber’s theorem, Mathematical Proceeding of the Royal Irish Academy, 104 A no. 1 (2004), 67-73.
S. Mecheri, Commutants and derivation ranges, Czechoslovak. Math. J., 49 no. 124 (1999), 843-847.
S. Mecheri, Finite operators, Demonstratio. Math., 3 7 (2002), 357-366.
S. Mecheri, Generalized finite operators, Demonstratio. Math., 38 no. 1 (2005), 163-167.
C. Olsen, A structure theorem for polynomial compact operators, American. J. Math., 63 (1971), 686.
J. G. Stampfli & B. L. Wadhwa, On dominant operators, Monatsh. Math., 84 (1977), 143 -153.
A. Uchiyama & T. Yoshino, On the class (y) operators, Nihonkai. Math. J., 8 (1997), 179-194.
J. P. Williams, Finite operators, Proc. Amer. Math. Soc., 26 (1970), 129-135.
R. E. Weber, Derivation and the trace class operators, Proc. Amer. Math. Soc., 73 (1979), 79-82.