Publicado

2005-07-01

On the normality of operators

Palabras clave:

Normal operators, Hilbert space, Hermitian operators, 2000 Mathematics Subject Classification, Primary: 47A15, Secondary: 47B20, 47A63 (en)

Descargas

Autores/as

  • Salah Mecheri King Saud University, Saudi Arabia

Abstract. In this paper we will investigate the normality in (WN) and (Y) classes.

Referencias

C. K. Fong & V. I. Istratescu, Some characterizations of hermitian operators and related classes of operators I, Proc. Amer. Math. Soc., 76 (1979), 107-112.

M. A. Kaashoek & M. R. F. Smyth, On operators T such that ƒ(T) is Riesz or meromorphic, Proc. Royal Irish Acad., 72 (1972), 81-87.

F. Kittaneh, Linear operators for which (ReT)2 ≤ |T|2, Tamkang J. Math., 11 no. 1 (1980), 11-115.

F. Kittaneh, On the structure of polynomially norm al operators, Bull. Austral. Math. Soc., 30 (1984), 11-18.

S. Mecheri, Some variants of Weber’s theorem, Mathematical Proceeding of the Royal Irish Academy, 104 A no. 1 (2004), 67-73.

S. Mecheri, Commutants and derivation ranges, Czechoslovak. Math. J., 49 no. 124 (1999), 843-847.

S. Mecheri, Finite operators, Demonstratio. Math., 3 7 (2002), 357-366.

S. Mecheri, Generalized finite operators, Demonstratio. Math., 38 no. 1 (2005), 163-167.

C. Olsen, A structure theorem for polynomial compact operators, American. J. Math., 63 (1971), 686.

J. G. Stampfli & B. L. Wadhwa, On dominant operators, Monatsh. Math., 84 (1977), 143 -153.

A. Uchiyama & T. Yoshino, On the class (y) operators, Nihonkai. Math. J., 8 (1997), 179-194.

J. P. Williams, Finite operators, Proc. Amer. Math. Soc., 26 (1970), 129-135.

R. E. Weber, Derivation and the trace class operators, Proc. Amer. Math. Soc., 73 (1979), 79-82.

Cómo citar

APA

Mecheri, S. (2005). On the normality of operators. Revista Colombiana de Matemáticas, 39(2), 87–95. https://revistas.unal.edu.co/index.php/recolma/article/view/94600

ACM

[1]
Mecheri, S. 2005. On the normality of operators. Revista Colombiana de Matemáticas. 39, 2 (jul. 2005), 87–95.

ACS

(1)
Mecheri, S. On the normality of operators. rev.colomb.mat 2005, 39, 87-95.

ABNT

MECHERI, S. On the normality of operators. Revista Colombiana de Matemáticas, [S. l.], v. 39, n. 2, p. 87–95, 2005. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/94600. Acesso em: 22 ene. 2025.

Chicago

Mecheri, Salah. 2005. «On the normality of operators». Revista Colombiana De Matemáticas 39 (2):87-95. https://revistas.unal.edu.co/index.php/recolma/article/view/94600.

Harvard

Mecheri, S. (2005) «On the normality of operators», Revista Colombiana de Matemáticas, 39(2), pp. 87–95. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/94600 (Accedido: 22 enero 2025).

IEEE

[1]
S. Mecheri, «On the normality of operators», rev.colomb.mat, vol. 39, n.º 2, pp. 87–95, jul. 2005.

MLA

Mecheri, S. «On the normality of operators». Revista Colombiana de Matemáticas, vol. 39, n.º 2, julio de 2005, pp. 87-95, https://revistas.unal.edu.co/index.php/recolma/article/view/94600.

Turabian

Mecheri, Salah. «On the normality of operators». Revista Colombiana de Matemáticas 39, no. 2 (julio 1, 2005): 87–95. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/94600.

Vancouver

1.
Mecheri S. On the normality of operators. rev.colomb.mat [Internet]. 1 de julio de 2005 [citado 22 de enero de 2025];39(2):87-95. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/94600

Descargar cita

Visitas a la página del resumen del artículo

47

Descargas

Los datos de descargas todavía no están disponibles.