The analytic fixed point function II
Palabras clave:
Fixed point function, Coefficients, Bürmann-Lagrange, Asymptotics, Equilibrium, First return, Branching process, 2000 Mathematics Subject Classification, Primary: 30B10, Secondary: 60F99, 60J80 (en)Descargas
Abstract. Let ϕ be analytic in the unit disk ⅅ and let ϕ (ⅅ) ⊂ ⅅ, ϕ (0). Then w = ƶ/ϕ (ƶ) has an analytic inverse ƶ = ƒ (w) for w ϵ ⅅ, the fixed point function. This paper studies the case that ϕ (1) = ϕ'(1) = 1 with a growth condition for ϕ"(χ) and determines the asymptotic behaviour of various combinations of the coefficients of ϕ connected with ƒ. The results can be interpreted in various contexts of probability theory.
Referencias
[AtNe72] K. B. Athreya & P. E. Ney, Branching processes, Springer, Berlin, 1972.
[Fe68] W. Feller, An introduction to probability theory and its applications I, John Wiley & Sons, New York, 1968.
[Gä77] J. Gärtner, On large deviations from the invariant measure, Theory Probab. Appl. 22 (1977), 24-39.
[KaNa94] A. V. Karpenko & V. Nagaev, Limit theorems for the total number of descendants for the Galton-Watson branching process, Theory Probab. Appl. 38 (1994), 433-455.
[MePo05] D. Mejia & Ch. Pommerenke, The analytic fixed point function in the disk, Comput. Methods Fund. Theory, 5 no. 2 (2005), 275-299.
[Pe75] V. V. Petrov, Sums of independent random variables, Springer, Berlin, 1975.
[PoSz25] G. Pöya & G. Szegö, Aufgaben und Lehrsätze aus der Analysis I, Springer, Berlin, 1925. [Po92] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer, Berlin, 1992.