Veröffentlicht

2024-01-11

Numerical representation of topological real algebras

Representación numérica de álgebras reales topológicas

DOI:

https://doi.org/10.15446/recolma.v57n1.112429

Schlagworte:

Gelfand-Mazur's theorem, Real algebra, Continuous numerical representations of total pre-orders (en)
Teorema de Gelfand-Mazur, álgebra real, representaciones reales continuas numéricas de preóordenes (es)

Downloads

Autor/innen

  • Gastáo Bettencourt Universidade da Beira Interior
  • Sergio Mendes Universidade da Beira Interior

We show that the isomorphism provided by the Gelfand-Mazur theorem for a commutative pre-ordered real Banach algebra A with unit defines a numerical representation which is compatible with the order structure.

Utilizamos que el isomorfismo dado por el teorema de Gelfand-Mazur para álgebras reales de Banach reales preordenadas conmutativas con unidad a su vez define una representación numérica compatible con la estructura de orden.

Literaturhinweise

F. Albiac and E. Briem, Representations of real Banach algebras, J. Aust. Math. Soc. 88 (2010), 289-300. DOI: https://doi.org/10.1017/S144678871000011X

M. J. Campión, J. C. Candeal, and E. Induráin, The existence of utility functions for weakly continuous preferences on a Banach space, Math. Social Sci. 51 (2006), no. 2, 227-237. DOI: https://doi.org/10.1016/j.mathsocsci.2005.07.007

J. C. Candeal, The continuous representability property in algebraic systems, In: Valero, O., Rodriguez-López, J., Tirado, P. (ed.) Applied Topology: Recent progress for computer science, fuzzy mathematics and economics WiAT'09 Conference Proceedings, 2009.

J. C. Candeal, E. Induráin, and J. A. Molina, Numerical representability of ordered topological spaces with compatible algebraic structure, Order 29 (2012), 131-146, DOI 10.1007/s11083-011-9202-8. DOI: https://doi.org/10.1007/s11083-011-9202-8

J. C. Candeal, J. R. De Miguel, and E. Induráin, Universal semigroups in additive utility, Semigroup Forum 56 (1998), 288-296. DOI: https://doi.org/10.1007/PL00005947

L. Inglestam, Real Banach algebras, Ark. Mat. 5 (1964), 239-270. DOI: https://doi.org/10.1007/BF02591126

I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418. DOI: https://doi.org/10.1215/S0012-7094-49-01640-3

M. Oudadess, Theorem of Gelfand-Mazur and commutativity in unital real topological algebras, Mediterr. J. Math. 8 (2010), 137-151. DOI: https://doi.org/10.1007/s00009-010-0092-6

H. Raubenheimer and S. Rode, Cones in Banach algebras, Indag. Mathem., N.S. 7 (1996), no. 4, 489-502. DOI: https://doi.org/10.1016/S0019-3577(97)89135-5

Zitationsvorschlag

APA

Bettencourt, G. und Mendes, S. (2024). Numerical representation of topological real algebras. Revista Colombiana de Matemáticas, 57(1), 103–113. https://doi.org/10.15446/recolma.v57n1.112429

ACM

[1]
Bettencourt, G. und Mendes, S. 2024. Numerical representation of topological real algebras. Revista Colombiana de Matemáticas. 57, 1 (Jan. 2024), 103–113. DOI:https://doi.org/10.15446/recolma.v57n1.112429.

ACS

(1)
Bettencourt, G.; Mendes, S. Numerical representation of topological real algebras. rev.colomb.mat 2024, 57, 103-113.

ABNT

BETTENCOURT, G.; MENDES, S. Numerical representation of topological real algebras. Revista Colombiana de Matemáticas, [S. l.], v. 57, n. 1, p. 103–113, 2024. DOI: 10.15446/recolma.v57n1.112429. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/112429. Acesso em: 22 jan. 2025.

Chicago

Bettencourt, Gastáo, und Sergio Mendes. 2024. „Numerical representation of topological real algebras“. Revista Colombiana De Matemáticas 57 (1):103-13. https://doi.org/10.15446/recolma.v57n1.112429.

Harvard

Bettencourt, G. und Mendes, S. (2024) „Numerical representation of topological real algebras“, Revista Colombiana de Matemáticas, 57(1), S. 103–113. doi: 10.15446/recolma.v57n1.112429.

IEEE

[1]
G. Bettencourt und S. Mendes, „Numerical representation of topological real algebras“, rev.colomb.mat, Bd. 57, Nr. 1, S. 103–113, Jan. 2024.

MLA

Bettencourt, G., und S. Mendes. „Numerical representation of topological real algebras“. Revista Colombiana de Matemáticas, Bd. 57, Nr. 1, Januar 2024, S. 103-1, doi:10.15446/recolma.v57n1.112429.

Turabian

Bettencourt, Gastáo, und Sergio Mendes. „Numerical representation of topological real algebras“. Revista Colombiana de Matemáticas 57, no. 1 (Januar 11, 2024): 103–113. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/112429.

Vancouver

1.
Bettencourt G, Mendes S. Numerical representation of topological real algebras. rev.colomb.mat [Internet]. 11. Januar 2024 [zitiert 22. Januar 2025];57(1):103-1. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/112429

Bibliografische Angaben herunterladen

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Aufrufe der Abstractseiten von Artikeln

58

Downloads

Keine Nutzungsdaten vorhanden.