Publicado

2024-01-11

Numerical representation of topological real algebras

Representación numérica de álgebras reales topológicas

DOI:

https://doi.org/10.15446/recolma.v57n1.112429

Palabras clave:

Gelfand-Mazur's theorem, Real algebra, Continuous numerical representations of total pre-orders (en)
Teorema de Gelfand-Mazur, álgebra real, representaciones reales continuas numéricas de preóordenes (es)

Descargas

Autores/as

  • Gastáo Bettencourt Universidade da Beira Interior
  • Sergio Mendes Universidade da Beira Interior

We show that the isomorphism provided by the Gelfand-Mazur theorem for a commutative pre-ordered real Banach algebra A with unit defines a numerical representation which is compatible with the order structure.

Utilizamos que el isomorfismo dado por el teorema de Gelfand-Mazur para álgebras reales de Banach reales preordenadas conmutativas con unidad a su vez define una representación numérica compatible con la estructura de orden.

Referencias

F. Albiac and E. Briem, Representations of real Banach algebras, J. Aust. Math. Soc. 88 (2010), 289-300. DOI: https://doi.org/10.1017/S144678871000011X

M. J. Campión, J. C. Candeal, and E. Induráin, The existence of utility functions for weakly continuous preferences on a Banach space, Math. Social Sci. 51 (2006), no. 2, 227-237. DOI: https://doi.org/10.1016/j.mathsocsci.2005.07.007

J. C. Candeal, The continuous representability property in algebraic systems, In: Valero, O., Rodriguez-López, J., Tirado, P. (ed.) Applied Topology: Recent progress for computer science, fuzzy mathematics and economics WiAT'09 Conference Proceedings, 2009.

J. C. Candeal, E. Induráin, and J. A. Molina, Numerical representability of ordered topological spaces with compatible algebraic structure, Order 29 (2012), 131-146, DOI 10.1007/s11083-011-9202-8. DOI: https://doi.org/10.1007/s11083-011-9202-8

J. C. Candeal, J. R. De Miguel, and E. Induráin, Universal semigroups in additive utility, Semigroup Forum 56 (1998), 288-296. DOI: https://doi.org/10.1007/PL00005947

L. Inglestam, Real Banach algebras, Ark. Mat. 5 (1964), 239-270. DOI: https://doi.org/10.1007/BF02591126

I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418. DOI: https://doi.org/10.1215/S0012-7094-49-01640-3

M. Oudadess, Theorem of Gelfand-Mazur and commutativity in unital real topological algebras, Mediterr. J. Math. 8 (2010), 137-151. DOI: https://doi.org/10.1007/s00009-010-0092-6

H. Raubenheimer and S. Rode, Cones in Banach algebras, Indag. Mathem., N.S. 7 (1996), no. 4, 489-502. DOI: https://doi.org/10.1016/S0019-3577(97)89135-5

Cómo citar

APA

Bettencourt, G. y Mendes, S. (2024). Numerical representation of topological real algebras. Revista Colombiana de Matemáticas, 57(1), 103–113. https://doi.org/10.15446/recolma.v57n1.112429

ACM

[1]
Bettencourt, G. y Mendes, S. 2024. Numerical representation of topological real algebras. Revista Colombiana de Matemáticas. 57, 1 (ene. 2024), 103–113. DOI:https://doi.org/10.15446/recolma.v57n1.112429.

ACS

(1)
Bettencourt, G.; Mendes, S. Numerical representation of topological real algebras. rev.colomb.mat 2024, 57, 103-113.

ABNT

BETTENCOURT, G.; MENDES, S. Numerical representation of topological real algebras. Revista Colombiana de Matemáticas, [S. l.], v. 57, n. 1, p. 103–113, 2024. DOI: 10.15446/recolma.v57n1.112429. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/112429. Acesso em: 22 ene. 2025.

Chicago

Bettencourt, Gastáo, y Sergio Mendes. 2024. «Numerical representation of topological real algebras». Revista Colombiana De Matemáticas 57 (1):103-13. https://doi.org/10.15446/recolma.v57n1.112429.

Harvard

Bettencourt, G. y Mendes, S. (2024) «Numerical representation of topological real algebras», Revista Colombiana de Matemáticas, 57(1), pp. 103–113. doi: 10.15446/recolma.v57n1.112429.

IEEE

[1]
G. Bettencourt y S. Mendes, «Numerical representation of topological real algebras», rev.colomb.mat, vol. 57, n.º 1, pp. 103–113, ene. 2024.

MLA

Bettencourt, G., y S. Mendes. «Numerical representation of topological real algebras». Revista Colombiana de Matemáticas, vol. 57, n.º 1, enero de 2024, pp. 103-1, doi:10.15446/recolma.v57n1.112429.

Turabian

Bettencourt, Gastáo, y Sergio Mendes. «Numerical representation of topological real algebras». Revista Colombiana de Matemáticas 57, no. 1 (enero 11, 2024): 103–113. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/112429.

Vancouver

1.
Bettencourt G, Mendes S. Numerical representation of topological real algebras. rev.colomb.mat [Internet]. 11 de enero de 2024 [citado 22 de enero de 2025];57(1):103-1. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/112429

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

58

Descargas

Los datos de descargas todavía no están disponibles.