Veröffentlicht

2011-01-01

On the Two-Parabolic Subgroups of SL(2,C)

Schlagworte:


Representation, Parabolic, Wirtinger presentation, Two-generated groups, Homomorphism, Longitude (es)

Autor/innen

  • Christian Pommerenke Technische Universität Berlin
  • Margarita Toro Universidad Nacional de Colombia
We consider homomorphisms $H_{t}$ from the free group $F$ of rank $2$ onto the subgroup of SL$(2,\mathbb{C})$ that is generated by two parabolic matrices. Up to conjugation, $H_{t}$ depends only on one complex parameter $t$. We study the possible relators, that is, the words $w\in F$ with $w\neq 1$ such that $H_{t}(w)=I$ for some $t\in\mathbb{C}$. We find several families of relators. Of particular interest here are relators connected with $2$-bridge knots, which we consider in a purely algebraic setting. We describe an algorithm to determine whether a given word is a possible relator.
Untitled Document
On the Two-Parabolic Subgroups of SL(2,\mathbbC)

Sobre los subgrupos dos-parabólicos de SL(2,\mathbbC)
CHRISTIAN POMMERENKE1, MARGARITA TORO2

1Technische Universität Berlin, Berlin, Germany. Email: pommeren@math.tu-berlin.de 
2Universidad Nacional de Colombia, Medellín, Colombia. Email:mmtoro@unal.edu.co 


Abstract

We consider homomorphisms Ht from the free group F of rank 2 onto the subgroup of SL(2,C) that is generated by two parabolic matrices. Up to conjugation, Ht depends only on one complex parameter t. We study the possible relators, that is, the words w∈ F with w≠ 1 such that Ht(w)=I for some t∈C
We find several families of relators. Of particular interest here are relators connected with 2-bridge knots, which we consider in a purely algebraic setting. We describe an algorithm to determine whether a given word is a possible relator.

Key words: Representation, Parabolic, Wirtinger presentation, Two-generated groups, Homomorphism, Longitude.


2000 Mathematics Subject Classification: 15A30, 57M05.

Resumen

Consideramos homomorfismos Ht del grupo libre F de rango 2 sobre el subgrupo de SL(2,C) que es generado por dos matrices parabólicas. Salvo conjugación, Ht depende sólo de un parámetro complejo t. Estudiamos los posibles relatores, esto es, las palabras w∈ F con w≠ 1 tal que Ht(w)=I para algún t∈C
Encontramos varias familias de relatores. De particular interés aquí son los relatores asociados con nudos de 2puentes, los cuales consideramos de forma puramente algebraica. Describimos un algoritmo para determinar cuándo una palabra dada es un posible relator.

Palabras clave: Representación, parabólico, presentación de Wirtinger, grupos dos-generados, homomorfismos, longitud.


Texto completo disponible en PDF


References

[1] W. Brumfield and H. M. Hilden, SL(2) Representations of Finitely Presented Groups, `Contemporary Math´, (1995), Vol. 187, AMS, Providence, United States.

[2] G. H. Burde and H. Zieschang, Knots, Walter de Gruyter, 1985.

[3] B. Fine, F. Levin, and G. Rosenberger, `Faithful Complex Representations of one Relator Groups´, N. Z. J. Math. 26, (1997), 45-52.

[4] J. Gilman, `The Structure of Two-Parabolic Space: Parabolic Dust and Iteration´, Geom. Dedicata 131, (2008), 27-48.

[5] J. Gilman and L. Keen, `Discreteness Criteria and the Hyperbolic Geometry of Palindromes´, Conform. Geom. Dyn 13, (2009), 76-90.

[6] J. Gilman and P. Waterman, `Classical T-Schottky Groups´, J. Analyse Math. 98, (2006), 1-42.

[7] C. Gordon and J. Luecke, `Knots are Determined by their Complements´, Bull. Amer. Math. Soc. 20, (1989), 83-87.

[8] H. M. Hilden, D. M. Tejada, and M. M. Toro, `Tunnel Number one Knots Have Palindrome Presentations´, J. Knot Th. Ramif. 11, 5 (2002), 815-831.

[9] A. Kawauchi, A Survey of Knot Theory, Birkhäuser Verlag, 1996.

[10] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, Germany, 1977.

[11] I. D. Macdonald, The Theory of Groups, Clarendon Press, Oxford, 1968.

[12] C. Maclachlan and A. W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, Springer, New York, United States, 2003.

[13] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, 2nd revised edition edn, Dover Publ., New York, United States, 1966.

[14] D. Mejía and C. Pommerenke, `Analytic Families of Homomorphisms into PSL(2,C)´, Comput. Meth. Funct. Th. 10, (2010), 81-96.

[15] T. Ohtsuki, R. Riley, and M. Sakuma, `Epimorphisms between 2-Bridge Link Groups´, Geom. Topol. Monogr.14, (2008), 417-450.

[16] R. Riley, `Parabolic Representations of Knot Groups I´, Proc. London Math. Soc. 3, 24 (1972), 217-242.

[17] R. Riley, `Nonabelian Representations of 2-Bridge Knot Groups´, Quart. J. Math. Oxford 2, 35 (1984), 191-208.

[18] R. Riley, `Holomorphically Parametrized Families of Subgroups of SL(2,C)´, Mathematika 32, (1985), 248-264.

[19] R. Riley, `Algebra for Heckoid Groups´, Trans. Amer. Math. Soc. 32, 1 (1994), 389-409.

[20] H. Schubert, `Knoten Mit Zwei Brücken´, Math. Z. 65, (1956), 133-170.

(Recibido en septiembre de 2010. Aceptado en febrero de 2011)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv45n1a04, 
    AUTHOR  = {Pommerenke, Christian and Toro, Margarita}, 
    TITLE   = {{On the Two-Parabolic Subgroups of SL\boldsymbol{(2,\mathbb{C})}}}, 
    JOURNAL = {Revista Colombiana de Matemáticas}, 
    YEAR    = {2011}, 
    volume  = {45}, 
    number  = {1}, 
    pages   = {37-50} 
}

Zitationsvorschlag

APA

Pommerenke, C. und Toro, M. (2011). On the Two-Parabolic Subgroups of SL(2,C). Revista Colombiana de Matemáticas, 45(1), 37–50. https://revistas.unal.edu.co/index.php/recolma/article/view/28062

ACM

[1]
Pommerenke, C. und Toro, M. 2011. On the Two-Parabolic Subgroups of SL(2,C). Revista Colombiana de Matemáticas. 45, 1 (Jan. 2011), 37–50.

ACS

(1)
Pommerenke, C.; Toro, M. On the Two-Parabolic Subgroups of SL(2,C). rev.colomb.mat 2011, 45, 37-50.

ABNT

POMMERENKE, C.; TORO, M. On the Two-Parabolic Subgroups of SL(2,C). Revista Colombiana de Matemáticas, [S. l.], v. 45, n. 1, p. 37–50, 2011. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/28062. Acesso em: 22 jan. 2025.

Chicago

Pommerenke, Christian, und Margarita Toro. 2011. „On the Two-Parabolic Subgroups of SL(2,C)“. Revista Colombiana De Matemáticas 45 (1):37-50. https://revistas.unal.edu.co/index.php/recolma/article/view/28062.

Harvard

Pommerenke, C. und Toro, M. (2011) „On the Two-Parabolic Subgroups of SL(2,C)“, Revista Colombiana de Matemáticas, 45(1), S. 37–50. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/28062 (Zugegriffen: 22 Januar 2025).

IEEE

[1]
C. Pommerenke und M. Toro, „On the Two-Parabolic Subgroups of SL(2,C)“, rev.colomb.mat, Bd. 45, Nr. 1, S. 37–50, Jan. 2011.

MLA

Pommerenke, C., und M. Toro. „On the Two-Parabolic Subgroups of SL(2,C)“. Revista Colombiana de Matemáticas, Bd. 45, Nr. 1, Januar 2011, S. 37-50, https://revistas.unal.edu.co/index.php/recolma/article/view/28062.

Turabian

Pommerenke, Christian, und Margarita Toro. „On the Two-Parabolic Subgroups of SL(2,C)“. Revista Colombiana de Matemáticas 45, no. 1 (Januar 1, 2011): 37–50. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/28062.

Vancouver

1.
Pommerenke C, Toro M. On the Two-Parabolic Subgroups of SL(2,C). rev.colomb.mat [Internet]. 1. Januar 2011 [zitiert 22. Januar 2025];45(1):37-50. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/28062

Bibliografische Angaben herunterladen

Aufrufe der Abstractseiten von Artikeln

144

Downloads

Keine Nutzungsdaten vorhanden.