On the Two-Parabolic Subgroups of SL(2,C)
Keywords:
Representation, Parabolic, Wirtinger presentation, Two-generated groups, Homomorphism, Longitude (es)
Downloads
1Technische Universität Berlin, Berlin, Germany. Email: pommeren@math.tu-berlin.de
2Universidad Nacional de Colombia, Medellín, Colombia. Email:mmtoro@unal.edu.co
We consider homomorphisms Ht from the free group F of rank 2 onto the subgroup of SL(2,C) that is generated by two parabolic matrices. Up to conjugation, Ht depends only on one complex parameter t. We study the possible relators, that is, the words w∈ F with w≠ 1 such that Ht(w)=I for some t∈C.
We find several families of relators. Of particular interest here are relators connected with 2-bridge knots, which we consider in a purely algebraic setting. We describe an algorithm to determine whether a given word is a possible relator.
Key words: Representation, Parabolic, Wirtinger presentation, Two-generated groups, Homomorphism, Longitude.
2000 Mathematics Subject Classification: 15A30, 57M05.
Consideramos homomorfismos Ht del grupo libre F de rango 2 sobre el subgrupo de SL(2,C) que es generado por dos matrices parabólicas. Salvo conjugación, Ht depende sólo de un parámetro complejo t. Estudiamos los posibles relatores, esto es, las palabras w∈ F con w≠ 1 tal que Ht(w)=I para algún t∈C.
Encontramos varias familias de relatores. De particular interés aquí son los relatores asociados con nudos de 2puentes, los cuales consideramos de forma puramente algebraica. Describimos un algoritmo para determinar cuándo una palabra dada es un posible relator.
Palabras clave: Representación, parabólico, presentación de Wirtinger, grupos dos-generados, homomorfismos, longitud.
Texto completo disponible en PDF
References
[1] W. Brumfield and H. M. Hilden, SL(2) Representations of Finitely Presented Groups, `Contemporary Math´, (1995), Vol. 187, AMS, Providence, United States.
[2] G. H. Burde and H. Zieschang, Knots, Walter de Gruyter, 1985.
[3] B. Fine, F. Levin, and G. Rosenberger, `Faithful Complex Representations of one Relator Groups´, N. Z. J. Math. 26, (1997), 45-52.
[4] J. Gilman, `The Structure of Two-Parabolic Space: Parabolic Dust and Iteration´, Geom. Dedicata 131, (2008), 27-48.
[5] J. Gilman and L. Keen, `Discreteness Criteria and the Hyperbolic Geometry of Palindromes´, Conform. Geom. Dyn 13, (2009), 76-90.
[6] J. Gilman and P. Waterman, `Classical T-Schottky Groups´, J. Analyse Math. 98, (2006), 1-42.
[7] C. Gordon and J. Luecke, `Knots are Determined by their Complements´, Bull. Amer. Math. Soc. 20, (1989), 83-87.
[8] H. M. Hilden, D. M. Tejada, and M. M. Toro, `Tunnel Number one Knots Have Palindrome Presentations´, J. Knot Th. Ramif. 11, 5 (2002), 815-831.
[9] A. Kawauchi, A Survey of Knot Theory, Birkhäuser Verlag, 1996.
[10] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, Germany, 1977.
[11] I. D. Macdonald, The Theory of Groups, Clarendon Press, Oxford, 1968.
[12] C. Maclachlan and A. W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, Springer, New York, United States, 2003.
[13] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, 2nd revised edition edn, Dover Publ., New York, United States, 1966.
[14] D. Mejía and C. Pommerenke, `Analytic Families of Homomorphisms into PSL(2,C)´, Comput. Meth. Funct. Th. 10, (2010), 81-96.
[15] T. Ohtsuki, R. Riley, and M. Sakuma, `Epimorphisms between 2-Bridge Link Groups´, Geom. Topol. Monogr.14, (2008), 417-450.
[16] R. Riley, `Parabolic Representations of Knot Groups I´, Proc. London Math. Soc. 3, 24 (1972), 217-242.
[17] R. Riley, `Nonabelian Representations of 2-Bridge Knot Groups´, Quart. J. Math. Oxford 2, 35 (1984), 191-208.
[18] R. Riley, `Holomorphically Parametrized Families of Subgroups of SL(2,C)´, Mathematika 32, (1985), 248-264.
[19] R. Riley, `Algebra for Heckoid Groups´, Trans. Amer. Math. Soc. 32, 1 (1994), 389-409.
[20] H. Schubert, `Knoten Mit Zwei Brücken´, Math. Z. 65, (1956), 133-170.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv45n1a04,AUTHOR = {Pommerenke, Christian and Toro, Margarita},
TITLE = {{On the Two-Parabolic Subgroups of SL\boldsymbol{(2,\mathbb{C})}}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2011},
volume = {45},
number = {1},
pages = {37-50}
}
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2011 Revista Colombiana de Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.