On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4
Schlagworte:
Commutative, Power-associative, Nilalgebra, Solvable, Nilpotent (es)
Downloads
1Universidad de La Serena, La Serena, Chile. Email: lelgueta@userena.cl
2Universidad de La Serena, La Serena, Chile. Email: asuazo@userena.cl
Let A be a commutative power-associative nilalgebra. In this paper we prove that when A (of characteristic ≠ 2) is of dimension ≤ 10 and the identity x4=0 is valid in A, then((y2)x2)x2=0 for all y, x in A and ((A2)2)2=0. That is, A is solvable.
Key words: Commutative, Power-associative, Nilalgebra, Solvable, Nilpotent.
2000 Mathematics Subject Classification: 17A05, 17A30.
Sea A una nilágebra conmutativa de potencias asociativas. En este trabajo demostramos que cuando A (de característica ≠ 2) es de dimensión ≤ 10 y la identidad x4=0 es válida en A, entonces ((y2)x2)x2=0 para todo y, xen A y ((A2)2)2=0. Es decir, A es soluble.
Palabras clave: Conmutativa, potencias asociativas, nilálgebra, soluble, nilpotente.
Texto completo disponible en PDF
References
[1] A. A. Albert, `Power-Associative Rings´, Trans. Amer. Math. Soc. 64, (1948), 552-593.
[2] I. Correa, I. R. Hentzel, and L. A. Peresi, `On the Solvability of the Commutative Power-Associative Nilalgebras of Dimension 6´, Linear Alg. Appl. 369, (2003), 185-192.
[3] L. Elgueta, J. C. G. Fernández, and A. Suazo, `Nilpotence of a Class of Commutative Power-Associative Nilalgebras´, Journal of Algebra 291, (2005), 492-504.
[4] L. Elgueta and A. Suazo, `Jordan Nilalgebras of Nilindex n and Dimension n+1´, Communications in Algebra 30, (2002), 5547-5561.
[5] L. Elgueta and A. Suazo, `Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4 and Dimension ≤ 8´, Proyecciones 23, 2 (2004), 123-129.
[6] J. C. G. Fernández, `On Commutative Power-Associative Nilalgebras´, Communications in Algebra 32, 6 (2004), 2243-2250.
[7] J. C. G. Fernández and A. Suazo, `Commutative Power-Associative Nilalgebras of Nilindex 5´, Results in Mathematics 47, (2005), 296-304.
[8] M. Gerstenhaber and H. C. Myung, `On Commutative Power-Associative Nilalgebras of Low Dimension´, Proc. Amer. Math. Soc. 48, (1975), 29-32.
[9] R. D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York, United States, 1966.
[10] D. A. Suttles, `Counterexample to a Conjecture of Albert´, Notices Amer. Math. Soc. 19, (1972), A-566. Abstract 72T- A169
[11] K. A. Zhevlakov, A. Slinko, I. P. Shestakov, and A. I. Shirshov, Rings that are Nearly Associative, Academic Press, New York, United States, 1982.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv44n2a05,AUTHOR = {Elgueta, Luisa and Suazo, Avelino},
TITLE = {{On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex~4}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2010},
volume = {44},
number = {2},
pages = {119-128}
}
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
Aufrufe der Abstractseiten von Artikeln
Downloads
Lizenz
Copyright (c) 2010 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.