Publicado

2010-07-01

On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4

Palabras clave:


Commutative, Power-associative, Nilalgebra, Solvable, Nilpotent (es)

Descargas

Autores/as

  • Luisa Elgueta Universidad de La Serena
  • Avelino Suazo Universidad de La Serena
Let $A$ be a commutative power-associative nilalgebra. In this paper we prove that when $A$ (of characteristic $\neq 2)$ is of dimension $\leq 10$ and the identity $x^{4}=0$ is valid in $A$, then $((y^{2})x^{2})x^{2}=0$ for all $y$, $x$ in $A$ and $((A^{2})^{2})^{2}=0$. That is, $A$ is solvable.
Untitled Document
On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4

Sobre la solubilidad de nilágebras conmutativas de potencias asociativas de nilíndice 4
LUISA ELGUETA1, AVELINO SUAZO2

1Universidad de La Serena, La Serena, Chile. Email: lelgueta@userena.cl 
2Universidad de La Serena, La Serena, Chile. Email: asuazo@userena.cl 


Abstract

Let A be a commutative power-associative nilalgebra. In this paper we prove that when A (of characteristic ≠ 2) is of dimension ≤ 10 and the identity x4=0 is valid in A, then((y2)x2)x2=0 for all yx in A and ((A2)2)2=0. That is, A is solvable.

Key words: Commutative, Power-associative, Nilalgebra, Solvable, Nilpotent.


2000 Mathematics Subject Classification: 17A05, 17A30.

Resumen

Sea A una nilágebra conmutativa de potencias asociativas. En este trabajo demostramos que cuando A (de característica ≠ 2) es de dimensión ≤ 10 y la identidad x4=0 es válida en A, entonces ((y2)x2)x2=0 para todo yxen A y ((A2)2)2=0. Es decir, A es soluble.

Palabras clave: Conmutativa, potencias asociativas, nilálgebra, soluble, nilpotente.


Texto completo disponible en PDF


References

[1] A. A. Albert, `Power-Associative Rings´, Trans. Amer. Math. Soc. 64, (1948), 552-593.

[2] I. Correa, I. R. Hentzel, and L. A. Peresi, `On the Solvability of the Commutative Power-Associative Nilalgebras of Dimension 6´, Linear Alg. Appl. 369, (2003), 185-192.

[3] L. Elgueta, J. C. G. Fernández, and A. Suazo, `Nilpotence of a Class of Commutative Power-Associative Nilalgebras´, Journal of Algebra 291, (2005), 492-504.

[4] L. Elgueta and A. Suazo, `Jordan Nilalgebras of Nilindex n and Dimension n+1´, Communications in Algebra 30, (2002), 5547-5561.

[5] L. Elgueta and A. Suazo, `Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4 and Dimension ≤ 8´, Proyecciones 23, 2 (2004), 123-129.

[6] J. C. G. Fernández, `On Commutative Power-Associative Nilalgebras´, Communications in Algebra 32, 6 (2004), 2243-2250.

[7] J. C. G. Fernández and A. Suazo, `Commutative Power-Associative Nilalgebras of Nilindex 5´, Results in Mathematics 47, (2005), 296-304.

[8] M. Gerstenhaber and H. C. Myung, `On Commutative Power-Associative Nilalgebras of Low Dimension´, Proc. Amer. Math. Soc. 48, (1975), 29-32.

[9] R. D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York, United States, 1966.

[10] D. A. Suttles, `Counterexample to a Conjecture of Albert´, Notices Amer. Math. Soc. 19, (1972), A-566. Abstract 72T- A169

[11] K. A. Zhevlakov, A. Slinko, I. P. Shestakov, and A. I. Shirshov, Rings that are Nearly Associative, Academic Press, New York, United States, 1982.

(Recibido en abril de 2010. Aceptado en agosto de 2010)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv44n2a05, 
    AUTHOR  = {Elgueta, Luisa and Suazo, Avelino}, 
    TITLE   = {{On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex~4}}, 
    JOURNAL = {Revista Colombiana de Matemáticas}, 
    YEAR    = {2010}, 
    volume  = {44}, 
    number  = {2}, 
    pages   = {119-128} 
}

Cómo citar

APA

Elgueta, L. y Suazo, A. (2010). On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4. Revista Colombiana de Matemáticas, 44(2), 119–128. https://revistas.unal.edu.co/index.php/recolma/article/view/28571

ACM

[1]
Elgueta, L. y Suazo, A. 2010. On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4. Revista Colombiana de Matemáticas. 44, 2 (jul. 2010), 119–128.

ACS

(1)
Elgueta, L.; Suazo, A. On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4. rev.colomb.mat 2010, 44, 119-128.

ABNT

ELGUETA, L.; SUAZO, A. On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4. Revista Colombiana de Matemáticas, [S. l.], v. 44, n. 2, p. 119–128, 2010. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/28571. Acesso em: 22 ene. 2025.

Chicago

Elgueta, Luisa, y Avelino Suazo. 2010. «On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4». Revista Colombiana De Matemáticas 44 (2):119-28. https://revistas.unal.edu.co/index.php/recolma/article/view/28571.

Harvard

Elgueta, L. y Suazo, A. (2010) «On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4», Revista Colombiana de Matemáticas, 44(2), pp. 119–128. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/28571 (Accedido: 22 enero 2025).

IEEE

[1]
L. Elgueta y A. Suazo, «On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4», rev.colomb.mat, vol. 44, n.º 2, pp. 119–128, jul. 2010.

MLA

Elgueta, L., y A. Suazo. «On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4». Revista Colombiana de Matemáticas, vol. 44, n.º 2, julio de 2010, pp. 119-28, https://revistas.unal.edu.co/index.php/recolma/article/view/28571.

Turabian

Elgueta, Luisa, y Avelino Suazo. «On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4». Revista Colombiana de Matemáticas 44, no. 2 (julio 1, 2010): 119–128. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/28571.

Vancouver

1.
Elgueta L, Suazo A. On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4. rev.colomb.mat [Internet]. 1 de julio de 2010 [citado 22 de enero de 2025];44(2):119-28. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/28571

Descargar cita

Visitas a la página del resumen del artículo

136

Descargas

Los datos de descargas todavía no están disponibles.