Commensurator Subgroups of Surface Groups
Schlagworte:
Commensurator, Fundamental group, Surface (es)Downloads
1Universidade de São Paulo, São Paulo, Brasil. Email: oeocampo@ime.usp.br
Let M be a surface, and let H be a subgroup of π1M. In this paper we study the commensurator subgroup C\\pi_1M(H) of π1M, and we extend a result of L. Paris and D. Rolfsen [7], when H is a geometric subgroup of π1M. We also give an application of commensurator subgroups to group representation theory. Finally, by considering certain closed curves on the Klein bottle, we apply a classification of these curves to self-intersection Nielsen theory.
Key words: Commensurator, Fundamental group, Surface.
2000 Mathematics Subject Classification: 20F65, 57M05.
Sean M una superfície y H un subgrupo de π1M. En este artículo estudiamos los subgrupos conmensuradoresC\\pi_1M(H) de π1M, y extendemos un resultado obtenido por L. Paris y D. Rolfsen en [7], cuando H es un subgrupo geométrico de π1M. También daremos una aplicación de estos subgrupos conmensuradores a la teoría de representaciones de grupos. Finalmente, considerando ciertas curvas cerradas en la botella de Klein, aplicaremos una clasificación de estas curvas a la Teoría de Nielsen de auto-intersección.
Palabras clave: Comensurador, grupo fundamental, superfície.
Texto completo disponible en PDF
References
[1] S. A. Bogatyi, E. A. Kudryavtseva, and H. Zieschang, `On the Coincidence Points of Mappings of a Torus Into a Surface´, (Russian. Russian summary) Tr. Mat. Inst. Steklova 247, (2004), 15-34. Geom. Topol. i Teor. Mnozh, translation in Proc. Steklov Inst. Math. 2004, no. 4 (247), 9-27
[2] M. Burger and P. d. l. Harpe, `Constructing Irreducible Representations of Discrete Groups´, Proc. Indian Acad. Sci. Math. Sci. 107, 3 (1997), 223-235.
[3] D. R. J. Chillingworth, `Winding Numbers on Surfaces. II´, Math. Ann. 199, (1972), 131-153.
[4] H. B. Griffiths, `The Fundamental Group of a Surface, and a Theorem of Schreier´, Acta Math. 110, (1963), 1-17.
[5] G. W. Mackey, The Theory of Unitary Group Representations, University of Chicago Press, 1976.
[6] O. E. Ocampo, Subgrupos geométricos e seus comensuradores em grupos de tranças de superfície, Dissertação de Mestrado, Universidade de São Paulo, São Paulo, Brasil, 2009.
[7] L. Paris and D. Rolfsen, `Geometric Subgroups of Surface Braid Groups´, Ann. Inst. Fourier 49, (1999), 417-472.
[8] D. Rolfsen, `Braid Subgroup Normalisers, Commensurators and Induced Representations´, Invent. Math. 68, (1997), 575-587.
[9] G. P. Scott, `Subgroups of Surface Groups are almost Geometric´, J. London Math. Soc. 17, (1978), 555-565.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv44n1a01,AUTHOR = {Ocampo Uribe, Oscar Eduardo},
TITLE = {{Commensurator Subgroups of Surface Groups}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2010},
volume = {44},
number = {1},
pages = {1-13}
}
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
Aufrufe der Abstractseiten von Artikeln
Downloads
Lizenz
Copyright (c) 2010 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.