Publicado

2010-01-01

Commensurator Subgroups of Surface Groups

Palabras clave:

Commensurator, Fundamental group, Surface (es)

Descargas

Autores/as

  • Oscar Eduardo Ocampo Uribe Universidade de São Paulo
Let $M$ be a surface, and let $H$ be a subgroup of $\pi_{1}M$. In this paper we study the commensurator subgroup $C_{\pi_{1}M}(H)$ of $\pi_{1}M$, and we extend a result of L. Paris and D. Rolfsen \cite{Paris-Rolfsen}, when $H$ is a geometric subgroup of $\pi_{1}M$. We also give an application of commensurator subgroups to group representation theory. Finally, by considering certain closed curves on the Klein bottle, we apply a classification of these curves to self-intersection Nielsen theory.
Untitled Document
Commensurator Subgroups of Surface Groups

Subgrupos comensuradores del grupo fundamental de superfícies
OSCAR EDUARDO OCAMPO URIBE1

1Universidade de São Paulo, São Paulo, Brasil. Email: oeocampo@ime.usp.br 


Abstract

Let M be a surface, and let H be a subgroup of π1M. In this paper we study the commensurator subgroup C\\pi_1M(H) of π1M, and we extend a result of L. Paris and D. Rolfsen [7], when H is a geometric subgroup of π1M. We also give an application of commensurator subgroups to group representation theory. Finally, by considering certain closed curves on the Klein bottle, we apply a classification of these curves to self-intersection Nielsen theory.

Key words: Commensurator, Fundamental group, Surface.


2000 Mathematics Subject Classification: 20F65, 57M05.

Resumen

Sean M una superfície y H un subgrupo de π1M. En este artículo estudiamos los subgrupos conmensuradoresC\\pi_1M(H) de π1M, y extendemos un resultado obtenido por L. Paris y D. Rolfsen en [7], cuando H es un subgrupo geométrico de π1M. También daremos una aplicación de estos subgrupos conmensuradores a la teoría de representaciones de grupos. Finalmente, considerando ciertas curvas cerradas en la botella de Klein, aplicaremos una clasificación de estas curvas a la Teoría de Nielsen de auto-intersección.

Palabras clave: Comensurador, grupo fundamental, superfície.


Texto completo disponible en PDF


References

[1] S. A. Bogatyi, E. A. Kudryavtseva, and H. Zieschang, `On the Coincidence Points of Mappings of a Torus Into a Surface´, (Russian. Russian summary) Tr. Mat. Inst. Steklova 247, (2004), 15-34. Geom. Topol. i Teor. Mnozh, translation in Proc. Steklov Inst. Math. 2004, no. 4 (247), 9-27

[2] M. Burger and P. d. l. Harpe, `Constructing Irreducible Representations of Discrete Groups´, Proc. Indian Acad. Sci. Math. Sci. 107, 3 (1997), 223-235.

[3] D. R. J. Chillingworth, `Winding Numbers on Surfaces. II´, Math. Ann. 199, (1972), 131-153.

[4] H. B. Griffiths, `The Fundamental Group of a Surface, and a Theorem of Schreier´, Acta Math. 110, (1963), 1-17.

[5] G. W. Mackey, The Theory of Unitary Group Representations, University of Chicago Press, 1976.

[6] O. E. Ocampo, Subgrupos geométricos e seus comensuradores em grupos de tranças de superfície, Dissertação de Mestrado, Universidade de São Paulo, São Paulo, Brasil, 2009.

[7] L. Paris and D. Rolfsen, `Geometric Subgroups of Surface Braid Groups´, Ann. Inst. Fourier 49, (1999), 417-472.

[8] D. Rolfsen, `Braid Subgroup Normalisers, Commensurators and Induced Representations´, Invent. Math. 68, (1997), 575-587.

[9] G. P. Scott, `Subgroups of Surface Groups are almost Geometric´, J. London Math. Soc. 17, (1978), 555-565.

(Recibido en junio de 2009. Aceptado en mayo de 2010)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv44n1a01, 
    AUTHOR  = {Ocampo Uribe, Oscar Eduardo}, 
    TITLE   = {{Commensurator Subgroups of Surface Groups}}, 
    JOURNAL = {Revista Colombiana de Matemáticas}, 
    YEAR    = {2010}, 
    volume  = {44}, 
    number  = {1}, 
    pages   = {1-13} 
}

Cómo citar

APA

Ocampo Uribe, O. E. (2010). Commensurator Subgroups of Surface Groups. Revista Colombiana de Matemáticas, 44(1), 1–13. https://revistas.unal.edu.co/index.php/recolma/article/view/28590

ACM

[1]
Ocampo Uribe, O.E. 2010. Commensurator Subgroups of Surface Groups. Revista Colombiana de Matemáticas. 44, 1 (ene. 2010), 1–13.

ACS

(1)
Ocampo Uribe, O. E. Commensurator Subgroups of Surface Groups. rev.colomb.mat 2010, 44, 1-13.

ABNT

OCAMPO URIBE, O. E. Commensurator Subgroups of Surface Groups. Revista Colombiana de Matemáticas, [S. l.], v. 44, n. 1, p. 1–13, 2010. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/28590. Acesso em: 22 ene. 2025.

Chicago

Ocampo Uribe, Oscar Eduardo. 2010. «Commensurator Subgroups of Surface Groups». Revista Colombiana De Matemáticas 44 (1):1-13. https://revistas.unal.edu.co/index.php/recolma/article/view/28590.

Harvard

Ocampo Uribe, O. E. (2010) «Commensurator Subgroups of Surface Groups», Revista Colombiana de Matemáticas, 44(1), pp. 1–13. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/28590 (Accedido: 22 enero 2025).

IEEE

[1]
O. E. Ocampo Uribe, «Commensurator Subgroups of Surface Groups», rev.colomb.mat, vol. 44, n.º 1, pp. 1–13, ene. 2010.

MLA

Ocampo Uribe, O. E. «Commensurator Subgroups of Surface Groups». Revista Colombiana de Matemáticas, vol. 44, n.º 1, enero de 2010, pp. 1-13, https://revistas.unal.edu.co/index.php/recolma/article/view/28590.

Turabian

Ocampo Uribe, Oscar Eduardo. «Commensurator Subgroups of Surface Groups». Revista Colombiana de Matemáticas 44, no. 1 (enero 1, 2010): 1–13. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/28590.

Vancouver

1.
Ocampo Uribe OE. Commensurator Subgroups of Surface Groups. rev.colomb.mat [Internet]. 1 de enero de 2010 [citado 22 de enero de 2025];44(1):1-13. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/28590

Descargar cita

Visitas a la página del resumen del artículo

128

Descargas

Los datos de descargas todavía no están disponibles.