Veröffentlicht

1993-01-01

The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems

Schlagworte:


Existence theorems, general equilibrium, Pareto optima, math, economic systems (es)

Autor/innen

  • H. G. Tillman University of Münster

We consider a Mathematical Economic System (M.E.S.) of Arrow- Debreu type, [Formula Matemática] where E = E(ro) is a locally convex R- vector space. We assume E barreled, later on we assume E a reflexive Banach Latice.

Example. /P, LP(μ), 1 ≤ p ≤∞Hilbert spaces.

Question: Which topologies τ in X are suitable for Economic Models?

Zitationsvorschlag

APA

Tillman, H. G. (1993). The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems. Revista Colombiana de Matemáticas, 27(1-2), 127–130. https://revistas.unal.edu.co/index.php/recolma/article/view/33582

ACM

[1]
Tillman, H.G. 1993. The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems. Revista Colombiana de Matemáticas. 27, 1-2 (Jan. 1993), 127–130.

ACS

(1)
Tillman, H. G. The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems. rev.colomb.mat 1993, 27, 127-130.

ABNT

TILLMAN, H. G. The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems. Revista Colombiana de Matemáticas, [S. l.], v. 27, n. 1-2, p. 127–130, 1993. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33582. Acesso em: 2 feb. 2025.

Chicago

Tillman, H. G. 1993. „The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems“. Revista Colombiana De Matemáticas 27 (1-2):127-30. https://revistas.unal.edu.co/index.php/recolma/article/view/33582.

Harvard

Tillman, H. G. (1993) „The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems“, Revista Colombiana de Matemáticas, 27(1-2), S. 127–130. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33582 (Zugegriffen: 2 Februar 2025).

IEEE

[1]
H. G. Tillman, „The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems“, rev.colomb.mat, Bd. 27, Nr. 1-2, S. 127–130, Jan. 1993.

MLA

Tillman, H. G. „The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems“. Revista Colombiana de Matemáticas, Bd. 27, Nr. 1-2, Januar 1993, S. 127-30, https://revistas.unal.edu.co/index.php/recolma/article/view/33582.

Turabian

Tillman, H. G. „The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems“. Revista Colombiana de Matemáticas 27, no. 1-2 (Januar 1, 1993): 127–130. Zugegriffen Februar 2, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33582.

Vancouver

1.
Tillman HG. The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems. rev.colomb.mat [Internet]. 1. Januar 1993 [zitiert 2. Februar 2025];27(1-2):127-30. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33582

Bibliografische Angaben herunterladen

Aufrufe der Abstractseiten von Artikeln

117

Downloads

Keine Nutzungsdaten vorhanden.